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Abstract

The effort of telecommunications operators in 5G design and implementation is oriented to effective

and efficient verticals support. Full network softwarization will deploy tools such as software-defined

networks and network function virtualisation to allow dynamic service provisioning on the same physical

infrastructure. However, current 5G proposed architecture still require further enhancement to guarantee

full real-time on-demand services. Current virtualisation technologies still miss complete automation

and adaptation, while they do not have dynamic negotiations capabilities. These issues are bounding

the desired complete automation and the significant reduction in OpEx and CapEx. Thus, the article

propose a full architecture to realise Autonomic Mobile Virtual Network Operators. This autonomic

virtual operators can be deployed by Internet Service Providers to guarantee efficient and effective network

adaptation to unexpected events and real-time resource requests. The objective of an AMVNO is to exploit

softwarization of networks and experiential intelligence to play the role of a local operator by performing

network management and service release without human intervention. Its autonomic character can also

provide proactive actions against unwanted network states.

Index Terms

5G, virtualisation, software-defined networking, autonomic mobile virtual network operator.

I. INTRODUCTION

In the last years, the vision of future generation networks (5G and beyond) revealed a relevant

broadening of its scope with respect to the previous generations. 5G and beyond 5G (B5G) networks will

need to address a significant heterogeneity not only of the involved technologies but also of the various

kinds of services, which will be offered to the customers of internet service providers (ISPs) and mobile

virtual network operators (MVNOs).
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Indeed, telecommunications’ operators are now strongly focusing on ’verticals’ to increase both their

customers and revenues in future 5G and B5G networks. The main method to achieve that is the gradual

replacement of current dedicated network equipment with general purpose one. In fact, this will be the

means to support a full network softwarization process to guarantee the desired flexibility to upgrade and

to reconfigure frequently the network infrastructure at acceptable costs. The main enablers identified by

research community and industry to realise full network softwarization and virtualisation are software-

defined networking (SDN) and network function virtualisation (NFV). Especially, these technologies will

also allow slicing of network infrastructure and resources. In this way, future infrastructure providers

(InPs) will be able to support the various requirements of different ISPs and MVNOs with the same

physical infrastructure. The leading role of current mobile operators as future InPs is also underlined by

the growing diffusion of MVNOs. According to a report of GSMA Intelligence, the number of MVNOs

increased 70% worldwide in the period 2010-2015, achieving the quota of 1017 in June 2015.

Figure 1 depicts a possible B5G scenario. Different kinds of end-users will simultaneously require

several types of services, with specific demands. The network will consist of three macro areas: random

access technologies/random access networks (RATs/RANs), edge and core networks. The RATs/RANs

will provide access via multiple wireless technologies (e.g. cellular, wireless local area network (WLAN),

satellite, etc.). In parallel, the edge/core networks will have nodes such as SDN switches and datacentres

of different sizes, which will host virtual network functions (VNFs) and services. Eventually, the core

network will also be able to support satellite links and satellite-based SDN switches.

Nevertheless, the current status of expected 5G and B5G architectures still lacks optimisation to perform

full real-time on-demand operations in such heterogeneous environment. Next, present virtualisation

technologies still require a lot of manual configuration and intervention, which are not suitable to

guarantee effective management of future low-latency (1-10ms) end-to-end services. Current SDN/NFV

based systems do not integrate dynamic negotiations capabilities, and are not fully self-adaptive and

self-driven. These aspects significantly limit the desired reduction in operational expenditure (OpEx) and

capital expenditure (CapEx), and the dreamed real automation.

During the last decade, a growing research trend focused on the extensive deployment of cognition

to make fully-autonomous cognitive networks. Especially, in the last few years, the research community

started the study of self-organised networks (SONs) [1] in parallel to virtualisation, by applying machine

learning and cognitive algorithms mainly towards self-healing and self-management. This increasing ten-

dency has resulted in the ongoing standardisation work of new European Telecommunications Standards

Institute (ETSI) group called Experiential Network Intelligence (ENI). Its purpose is to define a cognitive

network management architecture to improve operators’ experience with artificial intelligence.
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Fig. 1. Possible future generation networks scenario. The majority of the physical network infrastructure will include nodes

like SDN switches, ’micro/nano centres’ (with limited storage, processing and communication capabilities) and big datacentres

(with very high storage, processing and communication capabilities). The network will be divided into three main areas: the

RATs/RANs, the edge network and the core network. The RATs/RANs will include heterogeneous wireless access technologies

such as current 4G base stations, WLAN access points, mmWave base stations and satellites. Moreover, the core network will

merge both terrestrial and satellite infrastructures, given the presence of satellite gateways and satellite-based SDN switches.

The future network infrastructure will support a great variety of end-to-end services, including mobile broadband, vehicular

communications, public transports, unmanned vehicles, automated factories (machine-to-machine and human-to-machine) and

smart cities. End-to-end communications will possibly involve two RANs or a RAN and servers, located in the core/edge

network. In the figure, ’clouds’ overlapping means the areas of the network are interconnected while it is not clearly defined

the border between edge and core.

Side by side, in 2010, the concept of Cognitive Mobile Virtual Network Operator (CMVNO) [2] raised

next to the mainstream investigation about the cognitive management of networks from ’physical’ mobile

operators’ perspective. The main aim of CMVNOs was the enhancement of commercial and business

possibilities of both ISPs and newcomers to the market. However, the deployment of CMVNOs was

limited to RANs in order to enhance spectrum utilisation and dynamic spectrum leasing.

Given the strong standardisation and research effort towards cognitive/autonomic networks, it is impor-

tant to extend the idea of CMVNOs not only to physical resources but also to the management of entire

end-to-end virtualised networks such as virtual slices embracing RAT/RAN, edge and core network. That

because in the context of 5G/B5G, network performance is oriented to end-to-end services and not to
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optimisation of specific network characteristics.

This article aims to describe the structure, architecture and protocols to realise an Autonomic Mobile

Virtual Network Operator (AMVNO). The scope of an AMVNO is to optimise autonomously and

dynamically resource slicing, routing processes and VNFs placement. The realisation of AMVNOs can

allow ISPs and virtual operators to rent parts of InPs’ physical networks for efficient end-to-end service

provisioning. Moreover, InPs’ can also delegate to virtual operators the management and maintenance of

sections of their network. Such autonomic virtual operators would be required to deploy unsupervised

machine learning approaches for effective real-time self-management, self-adaptation and self-healing.

The AMVNO environment relies on the full integration of SDN and NFV in a unique architecture,

which is the current objective for a significant part of the research community. Nevertheless, this article

studies the novel concept of AMVNOs, which requires the efficient integration of autonomic operations

into SDN-NFV-based architectures. The autonomic network operations are possible via the use of an

autonomic control plane, mainly including a cognitive hypervisor. This hypervisor uses specific interfaces

and procedures for resource reservation/assignment and for management of the virtualised infrastructure.

AMVNOs must guarantee network performances on the basis of specific real-time resource requests

by the end-to-end services and they should be capable to respond effectively to sudden unexpected events

without human intervention. The AMVNO can exploit experiential intelligence not only for a posteriori

adaptation (reactive) but also to predict and to anticipate potential unwanted network states (proactive).

This article on AMVNOs investigates the possibility of a network management strategy independent of

human intervention, while also describing some important performance metrics and design/implementation

guidelines.

II. BACKGROUND ON FUNDAMENTAL CONCEPTS

A. Autonomics, Virtualisation and Slicing

The idea of ’autonomic system’ was firstly presented by [3] in 2003. Since then, cognition and

autonomics have become more and more interesting in the context of telecommunications. In general,

cognitive systems [1] are systems, which employ machine learning algorithms for self-configuration, self-

optimisation and self-healing. These learning algorithms can belong to three main categories: supervised

learning, unsupervised learning and reinforcement learning. The first type requires human supervision

for training and monitoring, the second one does not need any human supervision, while the third

one is based on rewards/penalties after decisions are made. On the other hand, autonomic systems are

specific unsupervised cognitive systems, which completely manage themselves given just high-level preset

objectives.
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While several cognitive approaches have been developed in previous and current generations of net-

works [1], the realisation of autonomic systems inside networks needed a flexible/reconfigurable control

infrastructure to find its fertile ground. That happened with the raise of the concepts of virtualisation and

’softwarization’ of networks, via the diffusion of SDN and NFV paradigms.

Software-defined networking [4] is a technology to allow software-based control of data-paths and

routing strategies of networks. The main idea behind such paradigm is the detachment of control and

data planes. The central entity of SDN architecture is the SDN controller, which updates the routing tables

and routing policies at the network nodes (SDN switches). An application layer is provided to place the

different networking applications such as data path control, user authentication and mobility management.

There are different protocol and architectures proposed by standardisation bodies and industry; however,

the standard protocol currently used for communications between controller and network devices is

Openflow.

The aim of Openflow secure protocol is to change the flow tables at the so called Openflow SDN

switches. These flow tables contain the rules, actions and policies to handle data traffic. Moreover, SDN

switches collect statistics to improve network analysis by SDN controller. A software change in the SDN

controller will modify the behaviour of the whole network.

Network function virtualisation mainly aims to decouple network functions from network hardware,

to provide flexible deployment of network functions and dynamic scaling. As SDN systems, NFV logic

architecture is composed of three layers. The first layer hosts the physical resources (computing, storage

and network). The second layer performs management and orchestration of the virtual resources, by

translating needs of services into actual deployment of network functions. Finally, the third layer contains

the software-based services, which are the virtual network functions to be used. In NFV architectures,

multiple control protocols [5] are available.

Though SDN and NFV were born independently, part of research effort during the last years focused

on the design of a common SDN-NFV system. Nevertheless, the definition of a unique SDN-NFV

architecture is challenging and it is still an open issue due to the complex interactions among them [7].

Three main approaches for a unified SDN-NFV architecture can be identified in the literature.

The first one (Figure 2), proposed by the ETSI working group [8], is based on the majority of research

works. This framework is composed by four main macro-blocks

• Operation/Business Support Scheme (OSS/BSS): the set of applications used by ISPs to provide

their services;

• Network Management System (NMS), which manages the virtualised network. It contains VNFs

and their respective element managements (EMs), and the tenant SDN controller (TC);
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Fig. 2. Architecture proposed by ETSI working group. Four macro-blocks compose this framework, called OSS/BSS, NMS,

NFVI and MANO: their role is described in the respective red rectangles. On the other hand, the functions of internal blocks

are summarised in the respective blue rectangles.
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(a) (b)

Fig. 3. (a) SDN-NFV architecture proposed by [6]. It consists of two main layers on top of the physical infrastructure. The first

layer, performing stateless processing, mainly includes SDN switches by providing connectivity. The second layer, performing

stateful processing, embraces VNFs and their functions (b) SDN-NFV architecture proposed by [7]. The pile has a horizontal

and a vertical orientation. The former is referred to VNFs, which can perform functions belonging to layers from internet up to

application. The latter is focused on management and connectivity for both data and control planes, via SDN.

• Network Function Virtualisation Infrastructure (NFVI), which includes physical and virtualised

resources to run the VNFs, and the infrastructure SDN controller (IC);

• Management and Orchestration (MANO), which performs management, coordination and automa-

tion of NFV architecture. This functionality groups the VNF manager (VNFM), the virtualised

infrastructure manager (VIM) and the orchestrator.

As an alternative, Figure 3(a) depicts the architecture proposed by [6]. This framework has two layers:

network and compute infrastructures. The former is an SDN infrastructure, which provides connectivity

enhanced by the additional support of VNFs processing. The latter is responsible for VNFs hosting and

processing.

Finally, Figure 3(b) shows the architecture proposed by [7]. It is a model with two orientations: a

vertical one represents the stack of VNFs for different layers, while a horizontal one includes data and

control planes for SDN-based management of all the virtualised layers.

Network slicing [9] is a technique based on virtualisation to create subsets of a network. Such separate

subsets can be used to improve resource management and flexibility or for resource allocation to different

tenants. There are mainly two ways to slice: Quality-of-Service (QoS) slicing (to guarantee specific

network performance requirements to specific users), and infrastructure sharing slicing (for physical

network compartmentalisation). Another classification can be according to the scope of slicing: spectrum-

level slicing, infrastructure-level slicing and network-level slicing.

Slicing procedures can enhance network adaptability, providing dynamic network management accord-

ing to operators’ policies. Its main enablers are SDN and NFV. Normally, the hardest portion of network
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to slice is the base station due to the high performance variability of wireless access links and fluctuating

capacity.

B. Resource Reservation

Resource reservation procedures can play a key role in network virtualisation. They can let optimal

assignment/mapping of physical network resources by additionally deploying effective traffic engineer-

ing techniques. Resource reservation represents a ’cross-domain’ element since it plays a role in both

virtualised and physical domains.

Regarding radio resource reservation in heterogeneous networks, IEEE 1900.4 can be an effective

solution for resource reservation. Particularly, its proposed framework provides a suitable architecture for

efficient management of terminal, RAN and network reconfigurations.

Resource Reservation Protocol (RSVP) is a well-known reservation protocol with the aim of guaran-

teeing limited latency to delay-sensitive applications. The protocol can reserve resources for traffic flows

from source to sink at all the intermediate nodes.

RSVP is a receiver-oriented reservation protocol, where both data and control packets are sent on the

same identified route.

The extension called RSVP Traffic Engineering (RSVP-TE) (see RFC 5151) introduced various objects

for traffic engineering and additional features such as fast reroute extension. Especially, this extension

was proposed to rapidly redirect traffic (less than 100ms) in case of network issues. The idea behind that

was the establishment of backup paths to repair locally the tunnels created for data flows.

Next, Section V will show the role of resource reservation in a practical use case of AMVNO.

III. AMVNO: VISION AND DESIGN GUIDELINES

This section describes the proposed architecture for an AMVNO. An AMVNO merges the SDN-NFV-

based architecture with autonomics and resource management protocols to create a unique system, which

can provide unsupervised and intelligent service towards optimal end-to-end QoS provisioning.

Figure 4 shows how the autonomic control plane can be integrated in SDN-NFV architectures (see

Subsection II-A). The maximisation of effectiveness of unsupervised learning algorithms forces to think

about autonomics as a parallel control plane and not only as a block within existing architectures. That

implies the extension of legacy SDN-NFV architectures towards an additional third dimension. As a

consequence, another type of logical interconnections are defined, which represents inter-plane logical

interactions. The absence of specific blocks at the end of pins at autonomic control plane means that the

logical structure of this plane strongly depends on its unsupervised learning and data mining algorithms.
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Fig. 4. Placement and role of the autonomic control plane, referring to previously presented SDN-NFV architectures. Pins

represent the logical interfaces/connections through which the autonomic control plane can gather information (data mining) and

can perform procedures of the unsupervised learning circle.
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That also significantly affects how information from all the blocks in the foreground plane is gathered,

processed and used.

The AMVNO with the architecture of Figure 4 takes advantage of a ’cross-layer/cross-blocks’ knowl-

edge, as it needs knowledge from both TC and IC, from VNFs and EMs (ETSI architecture in Figure

2). Additionally, an AMVNO exploits the stateless and stateful information from both SDN switches

and VNFs (architecture in Figure 3(a)). Finally, it requires strict interaction with both SDN and NFV,

which spans from internet layer to application layer (architecture in Figure 3(b)). The autonomic control

plane learns by performing a sequence of operations called sensing, planning, deciding, proactive acting

and performance verification. Especially, these represent the actions of an unsupervised learning circle,

which has no human in its loop.

Figure 5(a) depicts the functional-logical architecture of an AMVNO. In this figure, we have drawn an

SDN-NFV architecture, which includes and merges all the legacy characteristics that have been separately

described by Figure 2 and Figure 3.

The novel cognitive hypervisor performs all the functionalities of autonomic control plane and it

replaces MANO and OSS/BSS blocks of Figure 2. In particular, it knows the infrastructure’s description

and manages all the available services, system-level/management applications and VNFs. Cognitive

hypervisor’s interfaces can mainly perform managerial and informative functions:

• CHyp-TC and CHyp-IC connect the cognitive hypervisor with TC and IC respectively. They are both

informative and managerial since they are used for data gathering (from controllers) and management

of SDN controllers’ operations (i.e. SDN control plane management).

• CHyp-EUs connects the cognitive hypervisor with end users. It is mainly employed for users’ data

gathering.

• CHyp-EMsAL, CHyp-EMsTL and CHyp-EMsIL connect the cognitive hypervisor with EMs at all

layers. They are used to gather EMs’ control data and control VNFs’ information. Next, they can

also be employed to provide commands to EMs, to manage VNFs’ control plane behaviour.

• CHyp-VNFsAL, CHyp-VNFsTL and CHyp-VNFsIL connect the cognitive hypervisor with VNFs at

all layers. They are mainly used to collect information from VNFs’ data plane conditions and

performance.

• CHyp-CI connects the cognitive hypervisor with the compute infrastructure. Its main aim is to get

information about the status of computing/storage/network virtualised resources.

Next, reservation protocols/techniques represent bridges between SDN-NFV control plane and physical

network resources (located at either end-users or network infrastructure). Traffic engineering and advanced

characteristics of such protocols can improve data gathering, resource management and response efficiency
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(a)

(b)

Fig. 5. (a) Functional-logical architecture of an AMVNO (b) Schematic representation of the internal-logical structure of the

cognitive hypervisor.
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to network changes.

Figure 5(b) shows the internal-logical structure and operations of the cognitive hypervisor. A priori

high-level goals and requirements are defined by network managers or infrastructure owners: such param-

eters/laws represent precise boundaries, the cognitive hypervisor cannot cross via its decisions/actions.

Such restrictions can be used to implement policies or regulations the system has to follow.

The cognitive hypervisor’s operations are organised into five main phases:

1) Sensing – Given specific objectives, the logical entities in Figure 5(a) provide labelled data to the

hypervisor, using mining algorithms. Next, this information is internally processed by classifica-

tion algorithms. Finally, models and patterns are inferred to improve future data collection and

behavioural prediction.

2) Planning – Data and patterns of Phase 1 are fundamentals to train the machine learning algorithm

of the hypervisor. Then, data are analysed and prepared for the next phase.

3) Deciding – Classified and processed information is analysed from an end-to-end perspective to

make a decision on how to address specific network issues and negative states.

4) Proactive acting – Parameters, which are referred to both virtual network operations and network

resource configuration (RAN/edge/core), are set up. This action is proactively performed: this means

the cognitive hypervisor is always predicting network future states according to historic data. That

allows seamless changes of network configurations from end-users’ perspective. Next, physical

and virtual network elements are actually configured via the exploitation of reservation protocols,

Openflow proactive rules setting and proactive VNFs placement.

5) Performance verification – The cognitive hypervisor checks that its decisions/actions have achieved

the end-to-end QoS for all end users. This phase is crucial to ’close’ the autonomic loop, since the

autonomic entity managing the network needs to learn either from previous actions or ’errors’.

All the above phases provide new knowledge to the learning algorithm. The learning process and its

efficiency strictly depend on the specific algorithm chosen during AMVNO design and implementation.

However, the suggestion of specific algorithms and techniques for hypervisor’s phases and learning is

clearly out of the scope of this article. For some hints in this direction, the reader might refer to [1].

IV. DESIGN AND PERFORMANCE METRICS

Future 5G and B5G networks are focusing on the support of three main types of communication

services: Extreme Mobile Broadband (xMBB), ultra-reliable Machine-Type Communications (uMTCs) –

also called ultra-reliable low-latency communications (URLLCs) – and massive Machine-Type Commu-
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nications (mMTCs). All the three categories (and especially in uMTCs/URLLCs) will need to support

services with very strict requirements in terms of bandwidth, latency, reliability and availability.

By now, 5G and B5G key performance indicators (KPIs) are based on the following requirements:

• 10 times higher data rates to individual end users;

• 1 − 10ms round-trip time;

• higher bandwidth per unit of area and enormous number of connected devices;

• perceived network availability of 99.999%;

• reduced time to set up a service from local application to network individual service components.

The main paradigm, that have been identified by research community to be capable to guarantee very high

adaptability, proactive response to different situations and acceptable costs, is autonomics (see "5G-PPP

Working Group on Network Management and QoS").

In such scenario, 5G and B5G KPIs represent the high-level goals the autonomic system have to satisfy.

Nevertheless, there are several aspects to take into account during design and implementation of such an

AMVNO. Such aspects can be associated to four functionalities of the network infrastructure (see Figure

6(a)): SDN-NFV architecture, data mining, machine learning and physical network.

An AMVNO that wants to act proactively should take into consideration relevant parameters related

to its background SDN-NFV architecture. The time to configure network resources via controllers (e.g.

TCs, ICs and EMs) after decisions is fundamental to guarantee effective and ’seamless’ response to

dynamic network changes. Specifically, both the time to slice/to manage resources (via Openflow) and

to place/to activate VNFs are of paramount importance. In particular, Openflow proactive rule placement

should be employed, which takes advantage on predictive models. Such elements should be designed by

considering constraints in terms of complexity, communication overhead, information loss and reliability.

In fact, the techniques would need to strike a balance between the level of complexity (not to impact

on network and operating costs) and overhead (not to impact on performance). Moreover, autonomic

solutions have to guarantee negligible loss rates and reliability of Openflow and VNFs deployment to

avoid network configuration issues. In this framework, a valuable work, which studies the reliability of

VNFs considering reliability at multiple layers, can be found in [10].

As previously discussed in Section III, a fundamental phase of autonomic network management is data

mining. The time to collect and to classify data significantly affects AMVNO delay to address network

unexpected states. Furthermore, such data represent the key to improve models/patterns accuracy to

understand and to forecast future network behaviours. Networks are complex systems: the huge amount

of current/historic stored data requires a lot of processing effort (i.e. time) to support effective predictions.

Indeed, if a model/pattern requires adjustments, its updating time can affect system performance.
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(a)

(b)

Fig. 6. (a) Main domains that affect AMVNO’s performance and respective key design and performance metrics (b) The

example shows an InP hosting an AMVNO, which has to manage two kinds of services: uMTC/URLLC (Slice 1) and xMBB

(Slice 2). The former consists of a human (Source 3) controlling remotely a machine (Sink 3), while the latter is a real-time

video transmission from a centralised server (Sink 1-2) to mobile users (Source 1-2). The cognitive hypervisor is placed in a

big datacentre, which support processing, storage and bandwidth requirements. It can communicate with all the nodes to get/to

send information via NRMs and TRMs. TMC is responsible to collect information at the end user to be then transmitted to the

cognitive hypervisor via its TRM.
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From this discussion, it clearly appears how data collection and processing are closely related to

complexity, overhead and reliability. Huge data load needs significant storage capacity and available

processing resources. Because of that, a cognitive hypervisor should be placed in a cloud datacentre.

Finally, it is important to notice the role of errors-free communications for data collection and reliability

of theoretical models to avoid prediction errors.

Since autonomics implies no human intervention, the performance of machine learning has a central

role. However, some related parameters can negatively affect the performance of AMVNOs in terms of

latency:

• The collection of new data, which can change predictive models, requires time for continuous

training;

• the response time, which is required to make predictions after training, affects the latency to make

a decision;

• the convergence time consists in how fast an algorithm agrees that a found solution for a particular

problem is the optimal one at that time;

• the time to diagnose network status and to evaluate the correctness of made decision to achieve the

goals.

The main way to reduce the effect of these delays is to rely completely on predictive models to make

a-priori decisions. Nevertheless, that arises other significant issues, affecting the AMVNO. The accuracy

and reliability of predictive models have a key role especially when end-to-end services affect people

safety or can impact on the physical world. Regarding learning algorithms, the convergence reliability

is also significant, which represents the susceptibility of an algorithm to be stuck at local minima and

how can initial conditions affect its performance. Finally, complexity of learning algorithms should be

reduced since it can have negative effects on the system in terms of efficiency and costs. Some examples

of candidate learning schemes for cognitive/autonomic networking were proposed by the authors in [11],

[12], also demonstrating the flexibility of such schemes.

Finally, the physical network’s parameters also affect the performance of AMVNO. Especially, the

propagation time has a main role when networks like 5G and B5G involve satellites and satellite links.

The set up of satellite-based SDN switches and satellite gateways can raise latency and influence reliability.

In order to mitigate that, efficient algorithms should be designed to avoid performance degradation: an

recent interesting work in that context can be found in [13].

V. EXEMPLAR USE CASE OF AMVNO

Figure 6(b) depicts an example of 5G/B5G physical network of an InP hosting an AMVNO.
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The combination of service reservation procedure, traffic engineering and data mining allows the

cognitive hypervisor (inside a big datacentre) to associate mobile customers to a virtual slice with specific

VNFs, which can guarantee the requirements for their end-to-end applications. The service reservation

protocol is the means, which allows the control plane to reserve physical resources that are then translated

into virtual network elements via Openflow commands in the flow tables. Specifically, the example

suggests the possibility to use RSVP-TE with its extensions. Terminal reconfiguration managers (TRMs)

and network reconfiguration managers (NRMs) are the devices’ internal elements to communicate with

resource reservation, autonomic control plane and SDN-NFV control plane, which exploit Openflow as

their actuator in the virtual domain.

Each application session owns a data flow, which passes through a specific path. This path is translated

to a dedicated end-to-end virtual network slice with specific VNFs (see Figure 6(b)). The SDN-NFV

controllers (e.g. ICs, TCs and EMs) set up the flow tables and activate the VNFs belonging to the path.

In our previous real experiments in [14], we found end-to-end slicing with VNFs’ activation can be

efficiently realised via FLARE (a programmable node architecture) hosting containers based on Docker.

Thus, the AMVNO can exploit FLARE architecture to create efficiently end-to-end slices.

Figure 6(b) shows the logic representation of a network nodes with active slices and VNFs. Physical

resources at the node are separated into FLARE slices, each of which activates a container with a specific

VNF. NRMs sets up the configuration according to the guidelines sent by the cognitive hypervisor. Next,

the Slicer creates the virtual network topology, it receives the ingoing traffic and forwards it to the correct

FLARE slice. The isolated VNF inside Docker receives the respective traffic and performs its operations,

then the Slicer send processed traffic on the outgoing link. Once slices are active, the NRM updates

information in the Slicer. Slicer update via NRMs can be proactive by employing proactive Openflow

rules placement.

VI. CHALLENGES AND FUTURE DIRECTIONS

The realisation of an AMVNO requires stable and efficient SDN-NFV virtual infrastructures, which are

still under research. However, some steps forward in the proposed direction were already been analysed

in an early work [15]. The followings are the main challenges for an AMVNO grouped by technology.

First, the identification of effective cognitive algorithms for autonomic networks is still at its beginning.

No significant real results are available in the literature (except [11], [12]) and standardisation activities are

ongoing. Moreover, no significant discussion has been undertaken about network management without

human intervention. An important aspect to consider is the amount of resources (e.g. computing and

storage) and traffic load for data gathering a real-time autonomic network management requires (see
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"5G-PPP Working Group on Network Management and QoS"). In case of AMVNOs managing large

networks, the scalability of data mining and learning algorithm becomes important. Another aspect to

consider is the training time and its relationship with the reservation procedure. That also affects the

response time, which involves the efficient use of the backup list of paths. The type and amount of

training data the algorithm requires to achieve high performance is also fundamental.

Next, the design of accurate and reliable predictive models for autonomic management of complex

systems like 5G/B5G networks is still in its infancy.

The deployment of SDN/NFV raises the important question about centralised versus distributed control

plane. In fact, an important task should be the real evaluation of which solution would optimise the

performance of an AMVNO. In parallel, it would be interesting to study AMVNOs in multi-domain

context.

Slicing wireless networks, base stations’ resources and wireless links is still an ongoing research

area. How wireless resources are modelled highly changes slicing techniques and their performance.

This highlights the need to focus on RAN and Edge functions virtualisation and their real impact on

AMVNOs.

The structure proposed in [14] can be an efficient approach to achieve effective isolation to prevent

the deterioration on the performance of one slice because of any change in another slice (i.e. the number

of end users, flows or channel conditions).

VII. CONCLUSIONS

At the best of authors’ knowledge, this is the first work, which has proposed the deployment of

AMVNOs for future 5G and B5G networks. This is expected to reduce costs and to increase operators’

revenues. The article has provided a detailed description of AMVNOs by focusing on architecture,

performance, metrics and real implementation guidelines.

This paper should be intended as a roadmap for the development of an actual AMVNO architecture

since research and standardisation on that is still at its beginning and several presented issues require

further investigation before real implementation will become possible.
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