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Abstract—Future networks are expected to provide improved
support for several different kinds of applications and services.
All these services will have diverse characteristics and require-
ments to be satisfied. A potential technology to upgrade efficiently
and effectively current generation networks is virtualisation via
network ’softwarization’. This approach requires the combi-
nation of software-defined networking and network function
virtualisation. Nevertheless, such a new complex network struc-
ture will raise further issues and challenges to be solved both
reactively and proactively, without human intervention. In order
to achieve that, academia and industry have identified the solution
in the implementation and deployment of machine learning.
Hence, very likely, 5G (and especially beyond 5G) networks will
be cognitive virtualised networks.

In that context, this article proposes a cognitive software-
defined networking architecture based on Fuzzy Cognitive Maps.
First, specific design modifications of Fuzzy Cognitive Maps are
proposed to overcome some well-known issues of this learning
paradigm. Second, the efficient integration with a software-
defined networking architecture is presented and analysed. Fi-
nally, the emulation of a sample network scenario via Mininet is
provided to validate the effectiveness and the potential of the
new cognitive system and its capability to act and to adapt
independently of human intervention.

Index Terms—Cognitive networks, Fuzzy cognitive maps,
software-defined networking, network virtualisation.

I. INTRODUCTION

A cognitive network is a network which implements ’in-
telligent’ procedures – inspired by the cognition process

of real people – to learn from current operating conditions
in order to adapt and to make future decisions, targeting an
end-to-end goal. This concept was firstly proposed [1], [2] in
2006 and 2008 respectively. The main required characteristic
[1] to enable the deployment of cognitive networks is the ex-
istence of software-adaptable networks (SANs), which include
software-based network functionalities.

During the last few years, growing research on network
function virtualisation (NFV) [3] and especially on software-
defined networking (SDN) [4], provided a suitable infrastruc-
ture to pave the way towards an actual implementation of
cognitive networks. Moreover, the importance of NFV and
SDN grew towards the design and implementation of future
5G cellular networks [5]: in fact, they are seen as the main
technological enablers in order to achieve higher data-rate,
lower latency and adaptivity for their diverse service scenar-
ios. Indeed, in the cognitive networking paradigm, network
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Fig. 1. The cognition loop adapted from [6].

’softwarization’ provides exactly what is missing in current
networks:

• the capability to adapt themselves via software reconfig-
uration;

• a higher level of centralisation in the control plane, surely
beneficial to implement more efficiently reasoning and
learning processes of a cognitive network.

Nevertheless, the path towards actual deployment of the
potential of cognitive networks is still relatively long, as few
works target the core of the problem: the choice of an effective
decision-making procedure to support efficient data mining,
analysis and inference process [2].

Cognitive networks are based on the so called cognitive loop
(Figure 1). A complete cognitive process is based on Sense-
Plan-Decide-Act, which is accompanied by learning and final
environmental feedback. The Sense state is responsible for
information gathering, monitoring and pre-processing. Next,
the Plan state interprets the collected data according to a
model and use the results for planning. The Decide state
identifies the actions to be performed according to policies
and processed information, and evaluates eventual alternatives.
Finally, the Act state realises the actual action on the network.
The environmental information is used as input to re-start the
loop and helps in the final check of the effects: it can also
send alarms and warnings. All the previous states provide
a feedback, which helps the learning algorithm to improve
the performance and responsiveness according to the defined
policies.

Among the initial works about cognitive networks, some
significant ones theorised about the best tools a cognitive entity
should use to carry out their optimisation tasks ([1], [7]), while
others, instead, adopted specific reasoning techniques: anyway,
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often they did not clearly justify the reason for the choice
among those techniques [6]. In the last decade, several publi-
cations have investigated the deployment of various machine
learning (ML) algorithms to enhance the limited management
capabilities of legacy SDN. Nevertheless, in 2011 [8], the
authors of this paper were the first to propose a suitable
reasoning formalism for cognitive networks based on Fuzzy
Cognitive Maps (FCMs), which can be used to perform causal
reasoning. The innovative aspect lied in the adoption of such
a tool to explicitly exploit cause-effect relationships among
variables in the protocol stack of network nodes. The choice of
FCMs was based on the idea that variables at different layers of
the protocol stack share cause-effect relationships. Moreover,
FCMs allow the presence of loops, which are present in several
aspects of networking (see, for example, closed-loop operation
of flow and congestion control in TCP, automatic rate fallback
in WiFi, etc.).

Fuzzy cognitive maps [9] have significantly attracted the
attention of the research community in the last fifteen years.
The main limitations of FCMs, which have been identified, are
[10]: edges’ weights are linear, they cannot represent logical
operators between ingoing nodes, they cannot model multi-
meaning environments, they do not include multi-state con-
cepts, they cannot handle more than one relationship between
nodes, they are symmetric or monotonic (that does not happen
for various real causal relations), and their first order dynamics
cannot handle randomness associated with complex domains.

Learning algorithms for FCMs can be organised into three
main families [11]: Hebbian-based, population-based and hy-
brid approaches. The first type uses the basis of experts’
knowledge to lead FCMs to converge into an acceptable
solution. The second employs historical data without any
expert’s intervention. The third is based on both experts’ input
and historical data. The first detailed implemented architecture
for FCM-based cognitive networks presented in [8] and [12]
applied a Hebbian-based learning algorithm. These works pro-
vided a framework to design FCMs for cognitive networks by
overcoming the above limitations, which could have negatively
affected their deployment in the context of communications
networks. However, the authors of [8], [12] have not clearly
defined a criterion for the FCM-based algorithm to detect when
the inference process reaches a satisfying solution. Basically,
those works provided evidence of the potential of FCMs for
cognitive networking, without achieving a general solution in
order to predict when the system gets its final status. Still, they
represent a relevant milestone toward an actual architecture
able to support cognitive networking.

The contribution of this article includes:
• the definition of an enhanced theoretical model for FCMs

applied to wired networks. This model capitalises on pre-
vious results in [8], [12] to improve FCMs towards their
effective deployment in cognitive networks. In particular,
the article focuses on some critical aspects affecting clas-
sical FCMs’ inference process, which – according to the
best of authors’ knowledge – have not been investigated
yet in the scientific literature.

• the theoretical and practical proof that our enhanced
Hebbian-based FCM can work effectively without a-priori

knowledge of the network status. In fact, by considering
the taxonomy of ML-based SDN [13], ML approaches
generally employ so called training datasets, i.e. human
supervision.

• the design of an actual and effective architecture, where
the proposed enhanced FCMs are integrated into SDN-
based networks. That is followed by an actual validation
of this proposed system on an emulated testbed, therefore
proposing one of the first complete implementations of
FCM-based cognitive networking to date.

The rest of the paper is organised as follows. Subsection
I-A justifies the choice of FCMs for SDN-based cognitive
networks, by showing their advantages in respect of other
ML algorithms. Section II describes the mathematical nota-
tion and problem statement, as originally proposed in [12].
Furthermore, it briefly presents the Hebbian-based algorithm
used for learning. Next, Section III fully discusses the novel
enhanced model for Hebbian-based FCMs, which improves
the theoretical framework previously developed in [12]. Our
theoretical solutions improve the correctness/performance of
the algorithm towards efficient deployment in real cognitive
networks. Section IV deals with the design of a cognitive
software-defined networking architecture based on our pro-
posed FCMs. This section considers architectural analysis
and evaluation of overhead and latency introduced in SDN
paradigm by our enhanced Hebbian-based FCMs. Finally,
Section V provides results to verify the effectiveness of our
FCM-based SDN in two exemplar virtualised networks, which
have been implemented in Mininet environment.

A. Related Works and Motivation

Regarding unsupervised learning and SDN, the exhaustive
survey about ML-base SDN [13] identifies two main ap-
proaches in the literature: k-Means SDN and self-organising
map (SOM) SDN. The former is a popular method to classify
unlabelled data, so it make it useful both for classical and QoS-
aware traffic classification in SDN-based networks. It is mainly
limited to clustering problem solving and it is computationally
expensive, in particular for large maps with big amount of
training data. Recently, k-means have also been applied to
SDN to solve controller placement problem [14], [15], [16],
which is an important issue in presence of multiple SDN
controllers. The latter [17] is also principally employed to
solve clustering problems: its data mapping is easier to be
understood and capable to handle big datasets, while it is also
computationally expansive mainly for large training datasets.

Side by side, reinforcement learning (RL) [18] and deep
reinforcement learning (DRL) [19], [20] are additional ML
paradigms, in which an ’unsupervised agent’ interacts with its
environment to learn the best action to perform in order to
maximise its long-term reward.

Moreover, the taxonomy of works about ML applied to
SDN reveals that ML algorithms are very often limited to
specific aspects of SDN network management such as traffic
classification, Quality-of-Service (QoS), routing optimisation,
resource management or security: there has been no approach
yet, which has tried to use unsupervised ML/RL to realise a
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sort of SDN-based autonomic network (i.e. an SDN network
that manages itself without human intervention).

Regarding routing optimisation, the authors of [21] designed
a centralised Cognitive Routing Engine (CRE), based on
Random Neural Networks with Reinforcement Learning, was
to find the optimal network paths. In 2017, [22] applied RL
to improve the performance of routing protocols in SDN.
The same year, [23] developed a DRL agent to optimise
routing towards a decrease in network latency. Next, [24]
designed DRL paradigm for routing optimisation in SDN-
based environments. Reference [25] proposed solution based
on k-means to optimise routing protocol in SDN.

In the context of resource management, article [26] designed
a content delivery framework based on RL and SDN to select
the optimal protocol. Next, [27] deployed RL to minimise the
long-term reconfiguration cost of roadside unit cloud network
based on SDN. In 2017, [28] applied RL and game theory for
activation of servers in mobile edge computing based on SDN.
In parallel, [29] applied RL and game theory for resource
allocation and management in distributed environment based
on SDN. Recently, [30] applied DRL for multimedia traffic
control in SDN in order to achieve high quality of experience.

Given the above context, this article is the first one to design
in detail an FCM-based SDN system for unsupervised virtual
network management while providing a quantitative study of
its performances. Another pivotal characteristic of this work
is the scope of ML paradigm: the aim of our FCM-based
controller is not to optimise single aspects of networking but to
guarantee efficient and effective self management of the SDN-
based network. Thus, the cognitive controller has to control
and to manage various aspects of networking to guarantee
good routing management while enhancing QoS provisioning
via effective management of resources.

The choice of FCMs comes from a major aspect in the area
of unsupervised autonomic networks: human monitoring. In
fact, humans have to be able to monitor and to understand
easily how the cognitive controller thinks and acts: that to
prevent unwanted bad events. One of the main advantages of
FCM is exactly the clear and easy-to-understand representation
of knowledge [9], which does not happen with solutions
based on k-Means, SOMs and RL. This is important since
in unsupervised systems humans have to be able to control
how the unsupervised system thinks and make decisions.

Furthermore, while our design of FCMs is mainly focused
on resource/routing management and QoS optimisation (in this
article), the FCM-based controller can easily be employed to
consider and to manage other aspects of networking by adding
further variables to the FCM (e.g. variables referred to actions
and quality).

Fuzzy Cognitive Maps have more advantages than other
reasoning techniques such as neural networks, Bayesian and
Markov networks. Unlike both Bayesian and Markov net-
works, the inference procedure of FCMs is less complex since
it only involves vector-by-matrix multiplications and thresh-
olding operations [31]. Moreover, FCMs are more effective
to represent causality loops in a problem; for these kind of
problems Bayesian networks cannot be applied [32], [33]. In
Markov networks, the presence of loops cannot guarantee the

convergence of belief propagation algorithms [12]. On the
other hand, the FCM inference procedure is also effective to
solve problems involving no loops. In particular, inference is
guaranteed to converge to either a fixed point or a limit cycle,
provided that concepts take their values in any finite discrete
set [34].

Next, when neural networks are employed to model dy-
namic systems, the obtained solution does not necessarily
reflect the actual relationships among its system variables [35].
On the other hand, the edges of an FCM faithfully represent
those relations and are, therefore, more appropriate to analyse
both direct and indirect cross-layer interactions [33], [12].
Further advantage is the possibility of exchanging/merging
multiple FCMs, resembling operations people do when they
exchange their opinions [12]. This aspect has its roots in
the primary purpose for which FCMs were created, i.e. to
allow experts to represent their causal knowledge about some
situation. Different people may have different opinions about
the same matter, and may encode differently their beliefs,
hence drawing conflicting FCMs. Merging helps to smooth
(possibly divergent) beliefs and biases, thereby reducing the
possibility of biased reasoning. Moreover, weights can be
employed to give more or less credit to each FCM. Finally,
the ’composed FCM’ can contain potentially non-overlapping
FCMs, thus, enabling the exchange of knowledge in case the
domain of knowledge of cognitive entities is different, which
undoubtedly is an advantageous feature when dealing with
uncertain scenarios such as communication networks.

The main drawback of legacy FCMs is the automatic
synthesis of the maps: FCMs were not originally designed for
being constructed starting from observational data but they
were initially devised in the social science field as a tool
to help experts to express their beliefs about a given matter
[33]. For this reason, self-synthesis of FCMs is hard, mostly
because, for non-humans, cause/effect relationships between
variables are generally more complex to detect than simple
correlations [33].

Finally, the results obtained by our designed and imple-
mented FCM-based SDN keep comparable delays with legacy
SDN Open Network Operating System (ONOS), thus the
reasoning and acting procedures are performed almost trans-
parently. Moreover, our proposed cognitive SDN system can
achieve 100% accuracy in average thus overcoming all the
legacy ML-based SDN solutions [13].

II. PRELIMINARIES AND BACKGROUND

A. Software-defined Networking

Software-defined networking is a virtualisation paradigm,
which permits a software-based control of data-paths and
routing strategies of networks. This technology aims at de-
taching control and data plane of communication networks.
The central entity of SDN virtual architecture is the SDN
controller, which updates flow tables and policies at so called
SDN switches. Moreover, an application layer is responsible
to handle different networking applications such as control of
data paths, user authentication and management of mobility.
Among various protocols proposed for controller-switches
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Fig. 2. Structure of SDN virtual network (left side) and structure of SDN
architecture (left side), which specifies the logic interfaces of the architecture.

communications, the standard protocol currently in use is
Openflow: its aim is to change flow tables of Openflow SDN
switches, which contains rules, actions and policies related to
data traffic. Next, SDN switches collect statistics to be sent to
SDN controller for basic network control.

Figure 2 depicts SDN network structure (left side), which
has previously been described. The same figure (right side)
shows the logic architecture of SDN and its principal inter-
faces. In particular, the controllers (if multiple are allowed)
communicate each other via the eastbound/westbound inter-
face. Next, the northbound interface is the one that translates
the different third-party application requirements into network
commands. Finally, the southbound interface allows the con-
trollers to set up the flow tables of SDN switches via the
Openflow protocol to allow the creation of virtual networks
according to the needs of different services.

B. Introduction to Fuzzy Cognitive Maps

The ’cognition loop’, graphically represented in Figure 1,
is central to any cognitive architecture. Cognitive networking
undoubtedly needs a cross-layer approach to operate, which
represents the means to provide optimisation, while the cog-
nitive engine deals with learning, adaptation and decision
process to achieve end-to-end goals [12].

FCMs are mathematical structures proposed in 1986 [9] as
a means for modelling dynamic systems through the causal
relationships, which characterise them. Figure 3 shows a
simple example of graphical and matricial representation of
an FCM. The former is a directed graph, in which a node
represents a generic concept and an edge is the causal relation
between two connected concepts: especially, the cause is the
starting node of the directed edge.

The domains of nodes and the weights of edges can be either
discrete or continuous sets. The latter is used in more complex
FCMs, where a high level of detail needs to be achieved. For
example, by extending a continuous set from [0,1] to [−1,1],
it generally results in a greater flexibility of the model. The
use of simpler ranges of the same model is normally suited to
obtain a preliminary representation of a problem. If a concept
is zero, it means the concept is ’off’, ’inactive’, in a ’low-state’
or is completely neglected. On the other hand, a concept set
to one means it is ’high’ or ’active’. Edge weights measure
the degree of causality; values such as +1 or −1 denote a
strong causal relationship, either positive or negative. An edge
labelled with zero means that two concepts are not causally
related. Clearly, the graph cannot have loops since concepts

Fig. 3. Example of FCM structure and its respective matricial representation.

Fig. 4. Example of how the inference process of an FCM works. Thresholding
considers the threshold value 0.5.

cannot cause themselves. Thus, the diagonal of the adjacency
matrix F of an FCM only has zeros.

The state of an FCM-based system with n distinct concepts
is a vector of dimensions 1 × n. Then, the inference process
consists in various multiplications of this vector by the FCM
matrix. Next, the result is thresholded each time, until it
converges either to a fixed point or to a limit cycle. Figure
4 depicts a simple example of this inference procedure.

C. Fuzzy Cognitive Maps for Cognitive Networks

FCMs have been proposed to implement reasoning and
learning in cognitive networks [12]. In order to target an end-
to-end goal, the FCM should consider parameters associated
to different layers, and the FCM concepts should be mapped
to communication protocol internals. As proposed in [12], the
concepts can be grouped into three main categories according
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to their relationship with Quality-of-Service (QoS) metrics,
to environmental characteristics in which the cognitive entity
is, and to the set of actions that a protocol can perform.
Mathematically, these concepts respectively form the triple of
vectors (q,e,a), which represents the system state vector s.

The objective of the FCM is the convergence to a solution
state s∗ = (q,e,a∗), achieved by finding a vector a∗ such that
the constraints expressed by q are satisfied before environmen-
tal conditions e change. Since vectors q and e are known, the
search space of the algorithm is limited to the elements of a:
that avoids the problem to be NP-hard.

However, in order to map the concepts in the most effective
way, it is fundamental to choose the right domain. Concepts
can be expressed either by discrete sets or continuous sets. In
particular, it is normally better to avoid continuous sets be-
cause they can results into chaotic behaviour [12]. Continuous
ranges of values can be converted into discrete sets by ap-
plying a thresholding procedure. However, finding the optimal
threshold for an application may not be straightforward.

On the other hand, the size of a discrete set can be chosen
according to the needs. For example, concepts that convey
an ON-OFF relationship can use the set {0,1}, and the ones
requiring to invert causal relationship can use the set {−1,1}.

After defining the concepts and their domains, it is impor-
tant to select a learning algorithm for FCMs. The follow-
ing subsection provides some details on one of the existing
learning algorithms. That should be considered as a concrete
example of how learning can be implemented, but other
methods are available and can be used without architectural
differences with respect to the solution presented in this paper.

D. Differential Hebbian Learning Algorithm

In our work we borrow the problem statement proposed
in [12]: hence, we apply a Hebbian-based algorithm called
differential Hebbian learning (DHL) algorithm [36]. The main
drawback of this method is that the formula updates weights
between each pair of concepts without considering the influ-
ence of other concepts.

In order to explain how DHL algorithm works, let’s consider
a simple FCM with two concepts named A and B. If both A
and B change their values from 0 to 1, then it can be inferred
that the positive variation of one concept has caused a positive
variation of the other. Similarly, if both A and B change their
values from 1 to 0, it can be inferred that the negative variation
of A has produced a negative variation of B. In both cases the
sign of the variation is positive for these two concepts because
a positive causal relationship is present.

Let’s now suppose that A changes its value to 1 and B,
which before the variation of A had the value set to 1, goes to
0. In this case, there is a negative causality relationship because
a variation of the first concept led to the opposite variation of
the second, thus the edge connecting the two concepts is now
negative (for simplicity let’s assume the system is memoryless,
meaning that the algorithm does not consider the previous
states).

Formally, let Ci and Cj denote two generic concepts, and let
ÛCi and ÛCj denote their variations over time (time derivatives).

Moreover, let Ûf ti, j label the variation of the edge’s value,
connecting concept Ci with concept Cj at time instant t. Then,
the differential Hebbian law states that

Ûf ti, j = − f t−1
i, j +

ÛCt
i
ÛCt
j (1)

where the derivatives represent changes in two generic con-
cepts and the result of their product reveals the correlation
among them.

Expression (1) shows that a variation of concept Ci occurs
before the variation of concept Cj , the other way around if
Cj was the first concept changing then the edge to be updated
would be fj ,i . The negative value of the edge at time t − 1 is
included in the right-hand side of equation (1) to prevent that
a spurious simultaneous variation impacts indefinitely.

Next, the edge at step t is computed as the value it had at
time step t − 1 plus the variation:

f ti, j = f t−1
i, j +

Ûf ti, j = ÛC
t
i
ÛCt
j (2)

Thanks to the term − f t−1
i, j in expression (1), the value on the

edge can be set to zero when one of the concepts do not
change, thereby indicating that the previous causal relationship
no longer holds.

As a result, the learning process does not update the
knowledge considering only the current causality relationships
degree but also keeping in consideration the past value.

Depending on the application, such update may be preferred
to be more responsive or vice versa, the responsiveness of
the algorithm can be modified by introducing a parameter
η in the previous formula known either as learning rate or
as decreasing learning coefficient. In other words, it can be
seen as a smoothing parameter, capable to avoid significant
oscillation in the values of the edges (the amplitude of these
variations depends on the magnitude of the coefficient value).
Moreover, parameter η is generally defined in the set (0,1]:
values close to zero result in a slowly changing FCM, while
values close to the unity produce a highly responsive FCM.

Finally, the learning formula becomes

f ti, j = f t−1
i, j + η(− f t−1

i, j +
ÛCt
i
ÛCt
j ) (3)

It is worth notice that if η is set to one meaning that the past
value on the edge is not considered when it is updated, then
edges can assume values in the discrete set (−1,0,1) while a
different η results in continuous range of values.

III. ENHANCED FUZZY COGNITIVE MAPS FOR COGNITIVE
NETWORKS

The work in [12] proposed FCMs based on discrete domains
instead of continuous ones and introduced thresholding in
form of pre-processing in order to map values into discrete
domains. This section demonstrates the potential of using
continuous ranges of values, by avoiding thresholding. In
particular, we show the significant advantages obtained by
interpreting continuous values in the range [−1,1] as ’directed’
(signed) probabilities.

Moreover, we also show it is actually possible to acquire
knowledge not only related to the causality degrees among
nodes but also to create, modify and delete persisting causal
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relationships among them. In other words, the system is able
to start from an empty matrix, which means that no causal
relationships have been inserted a-priori (i.e. no knowledge
is provided to the system), and to build the edges during run
time by analysing the environmental cause-effect relationships
(i.e. the system can learn during run time). That would allow
a relevant capability ’to learn’ in an autonomous manner and,
in perspective, leading to a significant reduction in human
intervention in managing the network.

A. Finding the Desired State

First of all, it is necessary to identify an effective way
to detect either when the inference process has reached a
satisfying solution or when the process should continue. In
[12], this aspect was not completely investigated. Thus, this
subsection explains in detail how the inference process works
and the meaning of each of the steps performed during its
operation.

Figure 5 shows an example of an extremely simple FCM
and, on the right, the log of the inference process is reported.
A mathematical way to describe the connections between
concepts is the use of adjacency matrix since an FCM can
be represented as a directed graph. The example in Figure 5
has two concepts so it produces a 2 × 2 adjacency matrix.
The only connection between those concepts is the directed
line from Concept 0 to Concept 1. Then, the corresponding
adjacency matrix becomes(

0 1
0 0

)
(4)

Since there are no loops, the algorithm ends with a zero-
value array, which means that no further step has to be taken:
in fact, the knowledge involved in the variables and their
relationships have already been exploited. In order to simplify
the explanation, all of the examples reported are based on the
assumption that quality concepts are considered in a bad shape
or alert state when their value is high. The example of Figure
5 shows a positive causal relationship from an action to a
quality concept. Once the latter enters in an undesired state,
the inference process is triggered and the consequences for the
two possible states of the action variable are investigated. In
order to keep this example simple, the causality relationships
are supposed to be deterministic, thus we work with integer
numbers: however, the same procedure would have also been
applied in the continuous case.

By looking at the log (Figure 5, on the right), the repetition
of two identical vectors at the end of each trial are produced
by the inference process in order to automatically understand
when no further steps have to be performed, i.e. when the
knowledge of the FCM has already been fully exploited for
making a decision. The process finishes with the conclusion
that Concept 0 has to be set to a low value because this choice
– according to the information embedded in the FCM – will
move the system in a safer condition, so a low state for the
quality concept.

(a)

(b)

Fig. 5. (a) Simple FCM with positive causality (b) Description of FCM
inference process. The end of the inference process happens when there is a
repetition of two identical vectors at the end of each trial.

B. Belief Propagation for Fuzzy Cognitive Maps

The inference process implementation of [12] suggests that
at each step the output of the vector-by-matrix multiplications
has to be rounded with a threshold, which maps negative
values to zero and positive values to one. There are two main
problems related to this approach.

First, it is not possible to propagate negative causal relation-
ships because zero-valued relations stop the inference process.
The solution of this issue is to avoid thresholding. Figure 6
depicts an example where there is a negative causal relation-
ship from the action to the quality concept. The corresponding
adjacency matrix is (

0 −1
0 0

)
(5)

Since negative values in the output of the vector-by-matrix
multiplication are brought to zero it is unavoidable that causal
relationships are interrupted.

Second, precious information stored in the continuous set
[−1,1] is lost. According to the formula presented in the
learning part, the edges can acquire values in the continuous
set [−1,1], which can be treated as signed probabilities: in
particular, the sign on these values means that there is a
certain probability (the absolute value of the edge) that either
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(a)

(b)

Fig. 6. (a) Simple FCM with negative causality (b) Description of FCM
inference process. Example that shows the system cannot come to a decision
if thresholding is applied.

a positive or a negative relationship is present. As an example,
let’s consider three concepts A, B and C such that A implies
B with a value on the edge equal to 0.7, and B implies C
with a strength of −0.5; then the inference process will reveal
that A indirectly implies C with a value of −0.35, as we can
see the negative causal relationships are preserved thanks to
this approach. Moreover, since the values in the matrix of
the FCM system represent the past experience, referred to a
particular cause triggering a consequence with a certain degree
of confidence, we can claim that the absolute values on the
edges represent probabilities. Hence, in the previous example,
the value −0.35 is the probability resulting by the product
of the probabilities of the two edges. If A implies B with a
positive causal relation of probability 0.7 and B implies C
with a negative causal relation of probability 0.5 (note that
here the negative sign is missing because it is just related
to the causal relation of the probability), then an action on
A will result in a consequence to C with a negative causal
relation of probability 0.35. Then, since the obtained value
is negative, the target concept C has to be considered low.
Furthermore, if two probabilities with negative sign had been
involved, their product would have been resulted in a positive
causal relationship.

Figure 7 shows an example of a chain composed by five
concepts connected in a row, with arbitrary values in [−1,1]

(a)

(b)

Fig. 7. Example that shows the interpretation of continuous values as
probabilities (a) Example of an FCM (b) Description of FCM inference
process.

on the edge. The adjacency matrix of this FCM is

©«

0 0.8 0 0 0
0 0 −0.7 0 0
0 0 0 −0.5 0
0 0 0 0 −1
0 0 0 0 0

ª®®®®®®®¬
(6)

By interpreting the edges’ values as probabilities, it is possible
to come to the final decision through a belief propagation path,
which provides the highest confidence.

In order to define the meaning of the variable score dis-
played in Figure 7, let’s focus on the example reported in
Figure 8. There are two causality chains, which both lead to
the same quality parameter and enforce the same decision (the
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(a)

(b)

Fig. 8. Example that shows how combination of paths works (a) Example of
an FCM, which has two causality chains, which both lead to the same quality
parameter and enforce the same decision (b) Description of FCM inference
process.

action variable has to be set to a high state in this case). The
adjacency matrix becomes

©«

0 0.8 0 0 −0.1
0 0 −0.7 0 0
0 0 0 −0.5 0
0 0 0 0 −1
0 0 0 0 0

ª®®®®®®®¬
(7)

The weight associated to each path is used for comparison:
in the output of the implementation reported near the FCM
scheme, it is specified a score value, which is always positive.
This value represents a metric that can be used in order to
determine which causality chain better supports the choice of
a specific decision. It is possible to notice that the system

distinguishes between the two possible solutions according to
the causality path, which ends with the higher score. This
result is a direct consequence of the proposed novel inter-
pretation, which changes how the inference process works.
Furthermore, this probabilistic approach enables the system to
choose among different possible results. Moreover, the value
of the score is strictly related to the confidence that an action
will get specific effects: thus allowing to predict the probability
the system will be able to recover from an alert state.

By avoiding thresholding and by employing probabilistic
weights for the edges of the FCMs, the inference process can
now choose the statuses of the action variables. Then, it can
achieve – according to the knowledge contained in the FCM –
the best result, even when a trade-off is mandatory. In Figure
9, the FCM contains two quality concepts named (Q) Concept
2 and (Q) Concept 3. Its adjacency matrix is

©«
0 0.4 0 0.3
0 0 −0.9 0
0 0 0 0
0 0 0 0

ª®®®®¬
(8)

By looking at the causal relationships among the concepts,
it is easy to understand that it is impossible to satisfy both
the constraints due to the quality parameters (regardless of
the status imposed to the action variable). These situations
are very common in real world, when actions can frequently
have positive consequences but also unwanted ones. However,
a decision has to be made: in this example, the decision is do
not act, thus the action variable remains zero, and maintains
the variable (Q) Concept 2 in an alert state. Then, the system
has decided to fulfil the request of the latter variable, despite
the second quality concept.

The decision-making process, implemented in the inference
algorithm, chooses for the action that has the higher proba-
bility to lower the value of at least one quality variable. This
result may seem controversial because no relevance has been
considered for any of the two quality concepts. Moreover, in
this scenario, the system will keep changing the value of the
action variable in a continuous loop.

According to the authors, there are possible solutions for
this problem, and an appropriate choice has to be found
according to the specific system requirements. First, the system
can find a solution by noting that quality variables are treated
in the same manner: in particular, let’s differentiate among
quality variables by introducing a weight parameter, associated
to each of them. Thanks to these parameters, the inference
process can now assign the scores to each solution. In this
way, the FCM can provide a higher degree of priority to
a quality parameter with respect to the other. However, this
simple approach it requires a-priori knowledge since these
weight coefficients have to be manually set.

The second solution should be the consideration of fluc-
tuations in the response of the system due to the inference
process, as a special feature rather than a limitation. This
intrinsic behaviour is caused by the system, which tries to
satisfy the request of the first quality concept, at a price of an
undesired state for the second quality concept. So the request
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(a)

(b)

Fig. 9. Example that shows the presence of multiple quality parameters in
the FCM (a) Example of an FCM, in which, not thresholding and employing
probabilistic weights, allows the inference process to find the best trade-off
for the action variable (b) Description of FCM inference process.

of the second quality concept is satisfied but the result becomes
that the first quality concept will go back to a bad condition.

Nevertheless, the FCM with the proposed new character-
istics can still keep a certain physical magnitude between
two bounding levels. Let’s suppose a low value of the latter
mentioned quantity triggers the high state of the first quality
parameter, while a high value would have activated an alert
state of the second one. Our implementation maintains this
value between these two boundaries. In fact, given these two
alerting situations, the system reacts by activating/deactivating
the action variable, which can invert the current trend of the
physical magnitude. An additional important effect of this
novel proposed approach is also the capability to discover the
most appropriate action by trials and errors, so that it can
operate without any a-priori knowledge.

C. Combination of Different Paths
In the previous examples, we saw that – when there are two

paths from an action to a quality concept – the system decides
according to their relevance: in particular, this relevance is
related to the probability that an action will generate the
desired effects.

At this point, it may be useful to wonder if it is possible
to improve the decision procedure of Figure 8. Actually, that
can be achieved by combining the two possible paths instead
of singularly selecting them by adding up their weights to get
a more accurate decision. Moreover, it is important to prove
whether the standard inference process already performs the
combination of the contributions coming from different paths
and, in particular, if such behaviour happens regardless the
configuration of the FCM.

In Figure 9, the FCM singularly considered different paths.
Nevertheless, Figure 11 and Figure 10 show that this may not
be always the right method and, more important, it cannot be
possible to define a-priori which one of the two methods a
generic FCM has to use.

Figure 11 and Figure 10 represent two FCMs, which slightly
differ in their own structure: the first has unequal length
(expressed as number of hops, concept by concept from the
action to the quality variable) of the two chains, while the
second has equal lengths. Given the assumption that the
numbers of nodes and edges should not affect the decision
process methodology, if the two cases are similar then the
outcome should be equivalent.

By looking at the logs of the inference process (right side
Figure 11 and Figure 10), it is possible to see the previous
assumption has not been satisfied: in fact, the final scores are
different. It is also worth notice that the score in the second
case (Figure 10) could have also been greater than one, if
only the values on the edges where slightly different. These
inaccurate outcomes cannot be accepted during a reasoning
mechanism of a cognition system, thus a solution has to be
found.

In the first case (Figure 11), the two causality chains are
asymmetric (i.e. they do not enter in the final node at the same
time): this leads the system to consider the two contributions
separately, and to keep the most convenient one. However, in
the second case (Figure 10) – since the two causality chains
are symmetric – they infer on the quality parameter during
the same step, hence resulting in the combination of their
contributions. That means the two probabilities, coming from
the end of the two causality chains, are added up when they
enter in the final node (the quality parameter).

Each case (Figure 11 and Figure 10) shows a different
example of reasoning error: in the first case, the contribution
of the least significant path is not considered due to the
chain asymmetry, while, in the second, both contributions are
combined thanks to the chain symmetry, but the final value
comes from the simple addition of these two contributions.

Even if the values propagating in the map during the
execution of the protocol are considered as probabilities, such
a behaviour has to be expected since the inference process
is based on vector-by-matrix multiplication. This problem,
which has been discovered, comes from the union of two
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(a)

(b)

Fig. 10. Example to show the advantage of combining different paths (a)
Example of an FCM, which has unequal lengths (b) Description of FCM
inference process, which shows that values are erroneously added.

contradictory concepts. First, FCMs are supposed to be simple
and their knowledge easily understandable by humans, and
the vector-by-matrix multiplications necessary in the inference
process has become one of the most known feature, which is
supposed to represent the simplicity of this approach. On the
other hand, a cognition process has to be able to fully exploit
the stored knowledge in order to perform actions [12].

Then, we can understand that the problem lies in the nature
of FCMs. In order to correctly adapt FCMs to solve this issue,
we need to introduce some modifications in the inference
process implementation:

• If n branches, leading to the same concept, are not
composed of the same number of nodes (asymmetric

(a)

(b)

(c)

Fig. 11. Example to show the advantage of combining different paths (a)
Example of an FCM, which has unequal lengths (b) Description of FCM
inference process,which does not wait the outcome of the longest path (c)
Description of FCM inference process showing that inference always finds
optimal result.
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paths) then, during the inference process, inference on
the shorter path has to wait until the one on the longest
has arrived.

• When n concepts lead to the same node, their contribu-
tions to the final value have to be treated like probabilities,
i.e. they cannot be simply added up. Hence, the shared
target node is inferred with a probability, calculated as
the sum of independent random variables.

The first condition imposes that – regardless of the concept
class type – when there is more than one arrow entering a
node, a decision for the final value of this variable only has to
be computed when all the contributions – coming from other
nodes – are available. The second condition instead is related
to how these contributions have to be combined together: as
discussed before, the values propagating on the edges during
the algorithm execution are treated like probabilities, so that
the sum is not allowed because it could possibly lead to values
out of [0,1).

As an example, let’s consider two causality chains, reaching
a certain target node with probability 0.7 and 0.8 respectively.
As a consequence, their sum is 1.5, which it may be approxi-
mated to 1.0. Then, a causal relationship, represented with the
unity value, reflects a fully deterministic connection, which is
a nonsense if we consider that the ones closer to the sources
are not.

So, the proposed solution overcomes this issue by treating
probabilities as they are and by performing the addition
accordingly. The sum of independent random-variable formula
fits the bill and provides an output in the continuous set [0,1).
It is worth notice that every contribution coming from each
causality chain positively contributes to the final outcome. It
is also worth to notice that before combining the contributions,
the positive and negative causal relationships are separated and
only at the end are summed up. In particular, the proposed
expression is only used among contribution with the same sign.
Formally, given n variables{

y[n] = y[n − 1] + x[n] − y[n − 1] · x[n]

y[0] = 0
(9)

Referring to examples in Figure 11 and Figure 10, the score
variable is now meaningless once there is only one quality
variable because all the contributions, coming from different
paths, are combined together, thus resulting in a single score
value. It is possible to see that the outcomes of the two FCMs
are now equal as expected: in the inference process log, it
is clearly visible that the implementation waits for the first
branch on the left to advance and, once they are ready to
enter together in the quality variable, the algorithms proceed
with the sum of their probabilities.

D. Causality Loops Removal

If FCMs perform thresholding and map values in the dis-
crete range [0,1], the inference process can produce matrices
with redundant vectors. Then, once the algorithm recognises
that the current outcome has already been found in the past
steps it just stops. Nevertheless, by avoiding thresholds and

by interpreting weights of edges as probabilities, there is the
need to propose other solutions to face loops.

First, it would be possible to set a limit in order to determine
whether the inference process has to continue through the
chain of concepts or it has to stop: in particular when the
absolute value of the probability reported along a chain of
causal relationships is smaller than the threshold, the latter
action has to be performed. Moreover, the value of this limit
should be close to zero to allow the system to explore possible
solutions when weak knowledge is present on the edges, thus
resulting in small absolute values.

The idea behind this first approach comes from the fact
that loops in FCMs make the inference algorithm spinning
continuously across the involved nodes and this process never
stops because a steady solution cannot be found. It is worth
notice that cycle after cycle, the output of the inference process
converges to an interval close to zero: by definition, if the
causality values on the edges are bounded by the continuous
set [0,1), then the absolute value of the output will decrease
iteration after iteration. Given that, the introduction of the
proposed limit allows the algorithm to indirectly realise when
it is stuck in a loop.

The second proposed approach (the one applied in the rest
of this work) is based on a preprocessing operation, performed
before the inference process starts. During this stage, the
cognitive engine runs an algorithm similar to the Spanning tree
protocol: that can detect and remove cognition loops from the
FCM. This idea is supported by the consideration that, in the
matrix representing the knowledge, loops do not supply any
additional useful information to the final result of the inference
process, thus they can be removed with confidence.

According to this method, there is no need for a limit, which
may not be straightforward to be set to an appropriate value.
This second approach should be preferred to the first because
it avoids useless iteration across the same concepts forming
the loop. However, the drawback of this method is a higher
implementation complexity and an additional overhead in the
inference process.

Figure 12 depicts the FCM before and after the execution of
the procedure of loop removal. The adjacency matrix referred
to Figure 12(a) is

©«

0 −0.1 0 0 0 0 0
0 0 0.6 0 0 0.4 0
0 0 0 0 0 0.9 0
0 0 0.5 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0.6
0 0 0 0 0 0 0

ª®®®®®®®®®®®®¬
(10)

Especially, Figure 12(b) reveals that Concept 3 has been re-
moved from the collections of the considered nodes during the
inference process because it does not provide any information
since it is part of a loop.

The modifications applied so far on the FCMs’ inference
process resulted in an augmented complexity of the FCM-
based system. The first proposed approach can search faster
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(a)

(b)

Fig. 12. (a) Starting FCM, before loop removal (b) Ending FCM after loop
removal procedure.

and more time-effective compared to the second: actually, the
choice of the first would lead to longer and harder results to
understand because the output of the inference process would
be affected by many irrelevant values, related to the spin of
the algorithm around the loop. The system would properly
work anyway and the final decision would not change: then,
for completeness, both the approaches have been discussed in
this subsection.

E. Multiple Action Variables

Besides the entities devoted to reasoning and learning, an
FCM-based system also contains two fundamental modules, in
charge of performing the transcription of measurements from
the real world to the logical one and vice-versa: these units
are called sensors and actuators. This subsection will discuss
the latter.

In an FCM, there might be more than one variable belonging
to the action class: especially, when many causal relationships
are missing in the matrix, the decision-making process might
have to react to a bad-shaped situation of the system without
the possibility to rely on the necessary information. According

to the suggestion reported in [12], if no action has been found
during the inference process, the system has to randomise the
possible actions in order to discover what may lead to any
effect. However, there was no indication related to how such
a mechanism should be performed.

The task related to the discovery of relationships from the
action to the quality variables is particularly critical, mainly
because communication networks are dynamic systems rapidly
changing, and a certain action may only be effective for a
short period of time. By this consideration, it is a fundamental
requirement to deploy a system, which can discover the correct
set of actions as fast as possible, before the environmental
conditions change. An exhaustive search may not be feasible
because it could take a long time, since the number of sets
increases exponentially with the number of action variables.
On the other hand, if each action is tested independently from
the others, then the risk is to neglect possible effects, which are
only manifested when a combination of actions is examined.

To solve the above issue, this work proposes a novel ap-
proach, which contemplates both the previous considerations.
The main idea is to select a set of combinations of actions
capable to stimulate the system in a relatively small number
of steps. That is inspired by how humans perform when they
do not have any knowledge about the functions of a certain
device, so they can solely rely on their common sense. For
example a typical behaviour of a user that does not know how
to use a radio, is to push many buttons at the same time until
he is able to achieve the desired goal. The user is aware that
he will only need to press few buttons in order to reach his
objective. However, since he does not know which ones belong
to the correct combination, he will continuously try different
possibilities.

According to the aforementioned requirements, there is the
need to operate quickly over the network through actions in
order to discover new causal relationships. The formula used
in this article to generate k sequences of actions when in the
system there are N action variables is

yk ,n = (−1)k+ bcc (11)

where c = n−1
N 2 b k2 c , 1 ≤ n ≤ N and 1 ≤ k ≤ b2(dlog2 Ne+1)c.

In particular, it represents the starting point, which is used by
the cognitive engine to generate action matrices to determine
and to set the initial value of each action variable.

This formula has been derived from the generic family
of discrete transforms; in our scenario, the one-dimensional
sequences at different frequencies are treated as scrambled ac-
tion patterns. Actually, the authors have proposed this formula
because of its interesting following properties:
• half of the generated sequences are equal to the other half

but inverted, and there are always at least bN/2c active
actions at each iteration to boost the action impact on the
system;

• regardless of the position in the actions array, every
iteration each action has the same chance to be activated;

• the number of action sequences grows logarithmically
with the length of actions array.

Next, expression (11) produces the output matrices in Figure
13, which are particularly effective to train different combi-
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Fig. 13. Matrices to numerically derive the formula to generate k sequences
of actions when in the system there are N action variables.

nations in a small amount of iterations. As just discussed,
the number of steps is now logarithmic hence the system
can be probed in reasonable amount of time. In particular,
it is bounded by a range that is larger compared to the case
where each single action is singularly tested, but smaller
compared to the case of exhaustive search, which is an NP-
hard problem. The performance achieved by the cognitive
SDN system presented in Section IV are satisfactory, using
relation (11). However, the training of proposed FCMs may
be further optimised and improved: that is out of the scope of
this work. Further methods of FCMs’ training can be found
in [11].

F. Environmental Variables as Blocking Conditions

As previously explained in Subsection III-E, it is possible
to have more than one action variable, for which different
combinations are tested in order to discover the best set
of action values, according to the knowledge stored in the
map. However, in real world performing and acting or, more
generally, changing the value of a variable has an impact and
a cost.

Let’s suppose the controller of a cellular base station decides
to increase the output power of an antenna to provide a
better service for a set of users. That choice can be made
because in that particular area there are many customers,
who are consuming services characterised by a high demand
of bandwidth. Anyway, the situation is hardly sustainable
by the serving base stations because it is not possible to
deploy modulations with higher spectrum efficiency, due to
the distance. As a consequence, the FCM-based system can
enter in a bad-shape situation, and the inference process can
be run to find a solution. A proposed action may be to increase
the output power of the antenna because the system has learnt
in the past that it is possible to improve the QoS by increasing
the feeding current. Nevertheless, when a base station operates
with more power it can provide a better service to the users,
but there is also the risk that this increment will interfere with
other base stations located nearby.

Figure 14 displays an FCM, which already yields this
knowledge, represented by a number on the relative edge,
whose absolute value is particularly high: that means the
system is aware that the increase of output power through an
antenna leads to interference very often. Figure 14 and Figure
15 report the outputs of the two executions of the inference
process. In the first case, the blocking environmental concept
BSs nearby is not active, representing a scenario where there

(a)

(b)

Fig. 14. Inference process where the blocking environmental concept BSs
nearby is not active (a) Fuzzy cognitive map (b) Description of FCM inference
process.

are no neighbouring base stations: thus it is possible to increase
the power, moving the system to a safe condition where the
state of the variable Poor QoS is low. On the other hand, the
second case has a high environmental parameter (see the log),
so the inference process stops and communicates to the system
that it is better not to act. Indeed in the last scenario, the Poor
QoS alert state of the variable could not have been resolved
by acting since it would be resulted in a worse situation.

G. Negative Nodes Values

Despite significant part of the literature referred to FCMs,
this work proofs that adding negatives values to concepts can
boost the performance of the system. Instead of range [0,1],
the idea is to use the discrete set [−1,0,1], particularly suitable
for modelling concepts, for which low states (zero values)
yield a double meaning.

According to the authors, the zero value should be assigned
to a concept when its state is inactive. Next, a negative value
should be acquired by the variable when a concept has an
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(a)

(b)

Fig. 15. Inference process that takes into account neighbouring base stations
as blocking environmental concept (a) Fuzzy cognitive map (b) Description
of FCM inference process.

effect on the system, so when its influence is the inverse of
the high state case. As an example, let’s suppose there is a
positive causal relationship between the concepts Financial
Crisis and Poverty, where the first is the cause and the second
is the effect. The inference process of the FCM-based system
will reveal that, if the cause is in high state, then we can expect
the propagation of this status to lead to a high state also in the
poverty concept; on the other hand, when the Financial Crisis
variable takes the low value then the Poverty concept should
acquire the same status as well.

This example conveys that the zero-valued concept may
often be related to the fact that the economy is in a steady-
state condition, thus we cannot claim anything about poverty;
on the other hand, low Financial Crisis value may specifically
represent a growing economy, which has an active negative
impact on Poverty concept. In other words, in particular
scenarios, it is important to distinguish between an inactive
and a negative-state of a concept otherwise it would not be
possible to accurately model the parameters of the system.

Fig. 16. Reference architecture for Cognitive SDN based on FCMs.

IV. A COGNITIVE SOFTWARE-DEFINED NETWORKING
ARCHITECTURE

The SDN concept of centralising the control plane and
separating it from the data plane [4] sets up fertile ground
in order to effectively include the cognition processes in the
networks. This section clarifies why it has been decided to
locate cognition processes in the control plane of SDN. Figure
16 depicts the reference architecture of the proposed cognitive
SDN architecture.

By considering cloud-computing vision, system manage-
ment is centralised: therefore, the idea is to exploit this char-
acteristic of SDN by placing an FCM-based Cognitive Engine
over the SDN controller. In this way, the cognitive module
gains direct access to all network information processed by the
network manager, hence allowing learning and acting through
a unique interface. The network manager’s interface with the
FCM-based cognitive engine is used to exchange network
statistics, and commands to update network characteristics.

Recent developments in SDN theory have shown the need
of designing intent-based interfaces, for exposing network
functionalities to the upper layers. An intent-based approach
starts from the idea that a tenant should not obtain both
network details and access to the controller; nevertheless, a
tenant should only specify what the scope is, and then the
controller should perform effective operations to achieve the
requirements.

This approach has been widely adopted by OpenFlow
controllers [37]. Among those, it is particularly interesting
the work that has been performed on the ONOS controller
[38], which contains an intent-based interface that is capable
to perform advanced reasoning operations.

The controller of the proposed cognitive SDN system has
an intent-based interface to implement ’controller neutrality’.
In fact, users’ requests represent the input requirements from
the tenant. The intent-based controller is capable to translate
(compile) intents into data plane rules according to the current
network conditions: basically, once it retrieves the intention
from the user, it tries its best to accomplish the designated
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Fig. 17. Example of signalling between the FCM-based cognitive engine and
SDN (controller and data plane).

task, and it manages to react to the events in the network (e.g.
broken link) in order to maintain the intent alive. Especially, in
the latter case, the controller recompiles the intent in order to
adapt the corresponding actions on the network to the current
environmental situation. These operations cannot be performed
by following a rigid analytical model of the controlled system,
since very often the control logic can rely to little a-priori
knowledge, and the effectiveness of certain actions strongly
depends on the infrastructure characteristics and the operating
context, that have to be empirically discovered.

Figure 17 shows an example of signalling between cognitive
engine and SDN system. The process starts with the user,
who sends the requirements to the SDN controller. Next, SDN
controller updates OpenFlow tables at the data plane. The data
plane sends network statistics to the SDN controller, which are
interpreted and converted into variables for the FCM. Then,
these values are passed to the FCM-based cognitive engine,
which uses them for the learning/decision process. Suddenly,

a congestion happens. This event provides different statistics to
the SDN systems, which are given to the FCM to be analysed.
That results in further learning and subsequent autonomous
adaptation to the new network conditions. The last part of the
signalling has the same structure but shows the procedures
applied when congestion is solved.

A. Latency and Overhead

In order to react to network events, a certain amount of time
is needed for the cognition process to find a solution: this can
be split in
• the time required for the messages exchange between the

cognitive engine and the controller, plus the time required
for the inference process to complete,

• the time that has to be waited because the cognition
process is still evaluating whether the application of
certain actions are having any effect in solving an alarm
state.

In the first case the FCM has already enough knowledge for
applying a set of actions in response to an alarm state, the
reaction time of the cognitive engine is usually very short
and only depends on the computation and message exchange
capabilities of the system.

The latency overhead due to message exchange strongly
depends on the application-specific design choices. In the most
general case, each variable update (cognitive engine input)
and action (cognitive engine output) requires one message
exchange with the network controller; in case of large FCM
maps some optimizations could be introduced, for example
by performing the threshold comparison of the measurements
in the controller and notify the cognitive engine only when a
change on status has occurred.

Regarding the computational overhead, there are two main
activities that are performed by the cognitive process: learn-
ing and reasoning; the following measurements are aimed
at showing the impact of these tasks to the overall system
performances. It is worth to report that these measurements
have been obtained with a non-optimized cognitive engine
implementation, meaning that these absolute latency values
can be further reduced with proper implementation choices.
From performance perspective, the goal is to discover how the
proposed system scales when more complex network scenarios
with many variables are considered. Nevertheless, the order of
magnitude of these values can be considered suitable for most
networking scenarios, as these never exceed few milliseconds
with a 100-variable FCM with many causal relationships.

Figure 18 depicts the measured amount of time required
for completing the FCM update process, by considering also
the size of the map. The graph shows three boxplots related
to the time spent for the update for three FCM sizes, from a
small FCM with only 10 variables to a more complex with
100. The boxplot representation has been chosen because it
allows to show in a compact manner statistical information
of a set of data (in this case 160 samples for each FCM
size has been used), obtained by feeding the cognitive engine
(the actual implementation) with random variable changes, in
order to simulate a complex network with many events. As
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Fig. 18. Time needed for the FCM updating process by considering the size
of the map. The boxplots are related to the time spent for the update for three
FCM sizes, from a small FCM with only 10 variables to a more complex one
with 100. On each box, the bottom and top blue edges of each box indicate
the 25th and 75th percentiles respectively, the central red mark indicates the
median, and the two horizontal bars comprising the box are the minimum and
maximum values of the range of samples.

Fig. 19. At the top of the table, the maximum amount of cognitive
relationships is reported for each FCM size. Then, these values are used
as references for comparing them with three percentage levels of FCM link
filling.

previously stated, the main information obtained is related to
the increase of processing time when the FCM grows; results
show that time spent for the computation has approximately
doubled with a FCM size change from 10 to 100 variables,
proving that the updating process can scale well.

As results show, these operations does not demand high
resources, since the update process only involves one variable
status change and others that happened within the same per-
sistence time interval. Indeed, the reason behind the increase
of processing time with the FCM size is related to the higher
number of causal relationships that are usually present.

Different from the learning process is the reasoning one.
The exploitation of the available information contained in the
FCM requires the execution of the inference process which
however, from the computational perspective, does not contain
any exponential algorithm, meaning that it is expected to scale.

Figure 20, Figure 21 and Figure 22 report the time required
to find a suitable solution to an alarm state by considering
both the number of FCM variables and the number of causal
relationships. For these tests, it has also been considered the
number of causal relationships, since it proves to impact the
final performance measurements. Each graph is related to a
fixed number of variables (from left to right, 10, 50, 100
respectively, with 20 samples per box) where the time spent for

Fig. 20. Time needed for the FCM reasoning process by considering the
number of causal relationships, due to the small FCM size (10) there is no
relevant differences in the computational time.

Fig. 21. Similarly to Figure 20 it has been reported the processing time
required for different amounts of causal relationships, because of the greater
FCM size (50) their values show some small differences among them.

the computation is reported for different amount of information
stored in the FCM. For each FCM size, the maximum number
of causal relationships that can be established changes: it is
worth to notice that this value is given by N2 · 5/9 because
not all the causal relationships are stored where N is the FCM
matrix size (or number of variables). For example, it is not
possible to establish a causal relationship between two action
variables. Table 19 helps to map the absolute number of links
into the corresponding percentage of FCM information; these
values have been chosen in order to allow a fair comparison,
since for each FCM size it is reported the time spent for the
inference process when the FCM is full at 20%, 50% and 90%
approximately. The obtained results show that the proposed
reasoning technique is capable to provide action plans in short
amounts of time, which is aligned with the one reported by
ONOS.

Figure 23 shows the time spent by the inference processes
for different FCM sizes and different amounts of learnt
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Fig. 22. With the greatest reasonable FCM size (100) the differences in
the processing times depending on the number of causal relationships have
increased with respect to Figure 20 and Figure 21. However, it is worth
to notice that these have never exceeded the half millisecond, proving the
suitability of the proposed approach.

Fig. 23. Time spent by the inference process, considering both different FCM
sizes and different amounts of learnt relationships.

relationships. The results reveal that there is a small time
difference between an almost-empty FCM and an almost-full
one, only for large FCMs; on the other hand, smaller FCMs
shows negligible difference in time spent.

Figure 24 depicts the comparison between the latency due
to legacy ONOS-SDN networks with different characteristics
and the additional overhead (in time) due to set up of new
proposed FCM-based SDN system (with different FCM sizes).
This temporal analysis comes from the fact that 5G and beyond
5G networks will have latency as a main requirement: thus a
cognitive SDN framework, managing a virtual network, should
not affect significantly the latency of legacy SDN systems. The
picture clearly shows how negligible the overhead (additional
delay) of the FCM inference process is with respect to
operations in legacy SDN networks. For example, with a large
100-variables FCM, the impact on the delay for setting up an
end-to-end flow through 300 switches is of (3.63 ms / 3273 ms)
≈ 0.11%, meaning the overall time required by the controller
to act on the network is less than 3277 ms.

The goal of comparing order of magnitudes is to show that
the proposed FCM-based SDN paradigm introduces negligible
temporal overhead when the Cognitive Engine is implemented

Fig. 24. Representation of delay of legacy ONOS-SDN systems and of
the additional latency introduced by our Hebbian-based FCM algorithms.
The comparison of their orders of magnitude shows that our FCM solution
introduces negligible delay in legacy ONOS-SDN networks. The horizontal
axis considers the changing size of FCM, thus it is referred to FCM line (other
ONOS-referred lines remain constant). In order to increase the readability of
the picture, in the legend, the respective values of vertical axis are reported
between round brackets.
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on top legacy SDN controller. Indeed, the proposed approach
is not meant to replace existing SDN solution, but rather to add
new more effective cognitive functionalities. Figure 24 reports
the average processing time required by the FCM inference
process, and other time-based measurements obtained from
some ONOS performance tests [39]. By looking at the picture,
the impact of FCM operations on ONOS-SDN is in the order
of [10−4,10−2] ms (for FCM size = 100) and in the order of
[10−6,10−4] ms (for FCM size = 10). It is worth to notice
that FCM-based performances depend on factors such as the
FCM size and the number of relationships, while the delay
of ONOS-SDN controllers mainly depends on SDN-specific
tasks, where network latency between controllers and switches
plays a relevant role. The same horizontal axis on the graph
is referred to FCM size and only affects the curve related
to FCM-based SDN. In fact, setting up an OpenFlow rule
through a long path of switches has no correlation with having
a large FCM, since a single action variable on the FCM can
trigger the actuation of many configuration at a time. It is
also important to remember that absolute delay times strongly
depends on the implementation choices and optimisations:
from this perspective, with respect to the software that has
been developed for validation, there is room for improving
the implemented FCM-based solution, which can lead to a
further reduction of processing time.

B. Learning and Reasoning

Both sensing and acting operations require accurate design
choice in order to correctly translate the quantities from logical
to real world; this stage is particularly critical because it
deeply affects system performance. At this point, we can
start analysing how an FCM-based system implementation
should work with the concepts and their changes of status,
from the theoretical point of view of Differential Hebbian
Learning. When it comes to implement such approach, other
parameters have to be introduced. The first question that has
to be answered is "if A changes its status, how long should
the system wait for event(s) X(es) for considering it(them) the
effect(s) of cause A"? The correct interval time ∆ depends on
the application, some a-priori knowledge about the reactivity
of the system may help the designer in choosing the more
appropriate value, otherwise this parameter should be set after
some trials: if no edges are built in the FCM when the
supervisor is aware that concepts has changed their status,
then a higher ∆ value should be chosen. Figure 25 reports
the scheme of implementation of the cognitive process: in
particular the diagram shows that, apart from the learning
process, represented in the first block, the system is triggered
when events related to quality concepts enter in a bad shape
condition i.e. there is an alarm. The Φ time is related to
the persistence of the selected action(s): especially, in order
to detect whether an action(s) has(ve) been successful, it is
mandatory to wait for a certain amount of time in order to
allow the effects of such an action to happen. Usually it is
better if the Φ value is smaller than the ∆ time, because
otherwise it would not be possible for the FCM to connects
the effects to the actions. Processing the events maintaining

Fig. 25. Scheme of the implementation of the cognition process.

Fig. 26. Differential Hebbian Learning behaviour.

their asynchronous nature, i.e. as they occur in the real world,
allows the system to be more reactive to the changes and
thanks to this approach it is possible to provide the ability
to find the whole causal relationships happening among the
concepts. On the contrary, with the previous approach, some
of these relationships would have been lost. In Figure 26 and
Figure 27, a comparison between the two systems is provided:
in the old method, it is clearly visible that the relationships
between events E1 and E2 has not been considered. Instead
the causality connections between the couples E1→E3 and
E3→E4 have been registered even though. It is present a
large duration difference between the two cases (the first
lasted much longer than the second). With our novel approach
instead, as we can see in Figure 27, two events are considered
cause-effect when the difference of their timestamps is smaller
than ∆ time and greater than µ · ∆, with 0 < µ < 1. The
parameter µ is mandatory in order to prevent the enforcement
of false causal relationships, indeed if two events occurred
very close one to respect of the other: then it is likely that
they have to be considered contemporary meaning that there
is no relations between the two. In the example, the causal
relationships E1→E2 and E2→E3 have been registered since
the duration of each of them is shorter than ∆ and longer than
µ · ∆.

Finally, the delay is related to the learning coefficient and

Fig. 27. Behaviour of our new FCM-based SDN method.
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the persistence timer: in order to learn new causality relation-
ships, the cognitive engine has to wait for events to happen
within a temporal window and for reacting it has to wait for
discovering whether the selected actions set is effective. An
excessive reduction of the values of these parameters prevents
the cognitive process from establishing causal relationships,
or it leads to the establishment of false ones. The choice of
the most appropriate parameters is necessary to tune properly
system performances while a trade-off between reactivity and
correctness has to be found. These parameters and their impact
are expressed in Figure 19.

C. Number of Network Variables
In the cognitive engine, variables represent the network

environment that has to be managed; the number of variables
to be defined has an impact on the reasoning granularity, which
eventually affects the system performances. A small number of
variables prevents the cognitive process from discovering more
subtle relationships, leaving only the most trivial ones (for
example, a system with only “Move users” and “Congestion”
variables would not provide information about other aspects,
for example the user distribution and the network load).

On the other hand, many variables could be hard to de-
fine and could possibly overload the cognitive engine with
reasoning operations with small significance; for example, a
concept that has no correlation with the considered network
environment should be discarded. There is not a particular
bound on the number of variables in an FCM, however, the
authors propose to start with a large number of variables,
and then remove the ones that have not been part of any
causality relationship. In any case, there is the indication that
a large FCM is composed by “dozens of concepts”, meaning
that the maximum size of 100 variables, contemplated for
the performance evaluation, is close to the highest reasonable
number.

D. Convergence
The proposed cognitive engine, with its capability to build

new knowledge and change it according to network conditions,
requires a specific definition of convergence. The learning
process can be considered successfully completed when, for
the same input provided to the cognitive engine, there is a
set of optimal actions that can be obtained by simply using
the pre-discovered knowledge: these actions lead to the same
outcome that was already learnt. In this condition of “static
environment”, the causal relationships are enforced and the
cognitive process converges. However, the main objective of
the proposed work is to design a controlling system capable to
react to the dynamics of real-life networks, where some actions
are only effective for a certain amount of time, after which new
solutions must be found. From this perspective, it is safe to
claim that the cognitive process never converges because the
controlled network continues to change its characteristics, it
is a continuous adaptation to new conditions.

V. RESULTS AND DISCUSSIONS

In order to validate the FCM-based SDN, proposed in
Section III, a test network has been developed in Mininet [40],

Fig. 28. First scenario to test the performance of cognitive SDN.

composed by data and control plane. The reason to maintain
the two components independent – even in the validation
process – relies on the fact that the cognitive process can
actually work regardless of the controlled infrastructure.

Figure 28 depicts the first testing environment. As stated
above, the SDN network is emulated in the virtual machine of
Mininet, which exploits the network name-spaces functionality
of the Linux kernel and virtualises the full-network stack of
many virtual hosts. Such virtual hosts are the nodes of the
network: each of them runs a Java program, that connects
to the controller via the Control Network. The role of that
Java software is to manage the activity of the nodes, i.e.
this agent can start an instance of Iperf and can generate
traffic towards another node if requested by the controller.
Moreover, it can periodically report the current throughput to
the controller. Next, given these measurements, the controller
can detect whether a congestion state is occurring, i.e. it gets
information for the cognitive engine to perform reasoning.

The reason to separate the Experimental from the Control
Network, is related to the fact that the experiments, which
run on the former network, must not interfere with the service
information, exchanged between the nodes and the controller.
This design choice is particularly important: let’s consider the
controller runs tests on the Experimental Network and deeply
stresses the network infrastructure, where links are often at
their maximum capacity. Meanwhile, the control traffic must
not interfere with the measurements related to the experimental
network activity.

The whole virtual network is created and managed by
the Controller, which is connected to a Python agent that
controls the Mininet API, and sets up and configures the actual
networks in real time. In particular, in the initialisation stage,
the former component configures the network topology on the
experimental network. Besides that, the controller is also in
charge of leading the experiment, so it can act on the network
infrastructure. Furthermore, the controller can both redistribute
the users in the network (changing the switch to which users
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(a)

(b)

Fig. 29. Fuzzy Cognitive Maps referred to scenario in Figure 28 (a) This FCM
underlines that system starts with no a-priori knowledge (b) The Cognitive
Engine learnt the effectiveness of reducing bandwidth.

are associated), and reduce the throughput of each users: these
two elements represent the FCM’s Action variables of the
cognitive system.

Side by side, the FCM’s Environmental variables are: Bad
User Distribution, which is related to a non-homogeneous
users’ distribution among the switches, and High Load, related
to the overall network utilisation. Finally, the FCM’s Quality
variable is Congestion, which is triggered whenever at least an
user cannot achieve a throughput greater or equal to its profile
bandwidth (minimum guaranteed bandwidth). The users can
also randomly move across the network switches, and inter-
mittently start and stop the Iperf generated throughput: this
feature is useful to simulate when users move and not always
transmit.

The remainder of this section shows the results, which
demonstrate how the Cognitive Engine is actually capable
autonomously ’to unlearn’ old beliefs once they do not hold to
the current environmental situation any more, and immediately
after, to learn the new effective countermeasures for an alarm
state. In Figure 28, the congestion state is obtained since all
the clients transmit to the receiving node h9.

Next, Figure 29(a) represents the related FCM, which high-
lights that the controller has no a-priori knowledge. The con-
troller starts by activating the Move Users variable, but since
hosts are already homogeneously distributed it has no effect;
once it realises that this action is not suitable to the current
network condition, it tries to activate the Reduce Bandwidth
variable, which becomes effective since the congestion state

Fig. 30. Scenario to test the performance of cognitive SDN, where users’
connections with switches have been changed.

(a)

(b)

Fig. 31. Fuzzy Cognitive Maps referred to scenario in Figure 30 (a) Cognitive
Engine erased past knowledge and now goes on by trials. The objective is
to get safe state for (Q) Congestion (b) The Cognitive Engine learnt that
redistributing users among switches is effective. Creation of new relationship
between (A) Move Users and (Q) Congestion.
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Fig. 32. Graph which highlights the three main moments of the experiment. For clarity, some values have been slightly changed in order to allow a better
representation: in reality the response of the Cognitive Engine to an event is much quicker than what seems to be from the graph. The two actions available
at the Cognitive Engine are reported by the red and black plots, while the blue one reports the congestion state. Next, the light-green and light-blue lines are
related to the two environmental variables. For all of them, the ’on’ and ’off’ values are related to the active and non-active variable status respectively. The
feedback to the cognitive system is retrieved each time: after a change of status of some action variables, there are other environmental or quality variables
that change their status.

is not present any more.
At this point, a new causal relationship is created between

variables Reduce Bandwidth and Congestion, and it is enforced
each time the controller acquires new evidences about the
effectiveness of the action (see Figure 29(b)). Furthermore, a
new relationship between Reduce Bandwidth and High Load
is discovered: here, the latter is triggered when there is a
congestion because it is in this period that the bandwidth on
the gateway is saturated. After few minutes, the bandwidth on
the gateway is increased to 100 Mb/s, resulting in a network
condition where congestion disappears. As depicted in Figure
32, the Cognitive Engine do not act any more, but the acquired
knowledge is preserved.

At this point of the experiment, we manually move the
users among the switches, resulting in the network topology
of Figure 30: the variable Congestion is triggered due to the
bottleneck in the link s4–s5 (h9 remains the receiver), and
the Cognitive Engine – which is completely unaware of the
new change in the infrastructure – has to react. It first tries to
enable the Reduce Bandwidth action variable, that FCM has
proven to be effective in the past, but, since the hosts have
already reached the lowest guaranteed throughput, this action
cannot solve the issue.

After few trials, during which the causal relationship be-
tween Reduce Bandwidth and Congestion variables is weak-
ened, the controller returns in its original situation (Figure
31(a)), where it has to discover which action is more suitable
for bringing the quality variable in a safe state. Then, the
controller discovers that Move Users action variable – which

was previously ineffective – has now proved to be able to
reduce the congestion, thus a new causal relationship between
this action variable and Congestion is created and enforced
(see Figure 31(b)).

In order to let the controller strengthen the new belief, we
have manually forced the users to move towards a single
switch, resulting in new congestion states being triggered.
The final result not only contains information between the
currently working action variable for solving the congestion
state, but also includes certain causal relationships among
different environmental variables. Figure 32 shows the overall
experiment variables statuses over time. Especially, it is possi-
ble to recognise three main moments: first, Reduce Bandwidth
is the effective action, second, the latter action is not working
any more due to the changed network topology, third the
Cognitive Engine realises that the new effective action was
Move Users.

During the entire test duration, the Cognitive Engine has
mixed the learning and testing stages: at the beginning, for the
first 40 seconds, due to the complete absence of a-priori knowl-
edge the cognitive process has learnt by test and trials: the only
effective action to solve the congestion state was to reduce the
bandwidth. In the next period, this belief has been enforced by
the successive congestion states that raised and for which the
Cognitive Engine has managed to successfully handle them
(i.e. the congestion variable has switched from ’on’ to ’off’
state after the action had triggered). This phase continues until
the 330th second, after which the network scenario completely
changes: due to deep variations of users’ displacement, the
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Fig. 33. Comparison of upper bounds achieved by ML-based SDN solutions.
Upper bounds on accuracy of legacy solutions come from [13, Table VIII].
The underlined paradigms are belonging to either unsupervised ML or RL.

reduction of bandwidth becomes not effective. Once again,
the Cognitive Engine has to learn that by acting (period 330-
520 seconds) during which the congestion state remains to
an active level. Finally, the-out-of-dated knowledge model is
demolished and the Cognitive Engine is ready to experiment
with new action patterns; it tries by moving the users which,
differently from the initial scenario, is now an effective action
(see from the 520th seconds till the end). Finally, excluding the
periods during which knowledge had to be built either for lack
or out-of-dated knowledge, the system has shown an accuracy
of 100% (7 out of 7 congestion status in the first phase and 5
out of 5 in the second one).

Figure 33 depicts a comparison of upper bound of accuracy
of legacy ML-based SDN and the proposed FCM-based SDN.
In the context of routing optimisation, [41], [42], [43] calcu-
lated the accuracy of neural networks applied to SDN. In the
context of resource management, [44] calculated the accuracy
of some supervised ML algorithms (Naive Bayes, Linear
and radial support vector machine and k-neural networks)
and [45] evaluated the accuracy of unsupervised ML and
RL applied to SDN. As it is possible to see, the proposed
algorithm can reach the maximum of accuracy overpassing the
legacy ML-based SDN paradigms employing either supervised
ML, unsupervised ML or RL. Furthermore, the novel FCM-
based SDN handles both routing optimisation and resource
management while other legacy solutions only address one of
them.

VI. CONCLUSION

The main scope of the work is to propose the design and the
evaluation of a cognitive SDN architecture, employing FCMs
as learning algorithm. First, by borrowing the model presented
in [12], the authors have discussed and proposed novel char-
acteristics required by FCMs to enable their deployment in
the context of cognitive networks. Of particular interest, the
authors have proposed the interpretation of continuous edge
values as ’signed’ probabilities to adapt optimally FCMs to
the communication networks’ environment and relationships
among the related concepts. An efficient method for FCMs’
training has also been defined. Next, the authors has showed

in detail the proposed architecture for cognitive SDN. The
characteristics of this architecture have been studied and its
performance has been evaluated in some sample scenarios.
It is important to notice the capability of proposed cognitive
SDN to adapt and to learn, also without human intervention.
Moreover, the presented general cognitive architecture can also
work with different learning techniques.

To the best of authors’ knowledge, this is the first work
describing in detail FCM-based SDN networks, with a specific
learning algorithm and with exhaustive tests. Future works will
be focused on the following points: (i) further optimisation of
FCMs, by using both more advanced learning techniques and
training methods; (ii) the experimentation of other learning
technologies alternative to FCMs; (iii) the evaluation and test
of FCM-based SDN in further more complex scenarios.
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