
Fast on-demand 5G connectivity can be deployed through the 
usage of Aerial Platforms. Indeed, the usage of moving nodes 
represents at the moment the most interesting and cost-
affordable way to bring connectivity and network services in 
emergency scenarios or in case of absence of the network 
infrastructure. This paper presents an architecture for using 
drones as movable base stations, interconnected with a high 
altitude platform, capable of deploying a Multi-Access Edge 
Computing following current ETSI standards. Moreover, a 
reinforcement learning algorithm is proposed to enable proper 
resource allocation in order to guarantee QoS requirements. 
 

Introduction 
Unmanned Aerial Vehicles (UAVs), especially drones, are 
increasingly being used by civil and military applications due 
to their low cost, agility and freedom of movement. However, 
while commonly vehicles, e.g. cars, are typically considered 
end-hosts or relay nodes of networks, UAVs can provide novel 
applications, e.g. in terms of swarms of mobile base stations as 
well as nodes in a mobile cloud, thus allowing on-demand 
delivery of connectivity and processing power. This is made 
possible by the fact that a UAV is typically capable of bringing 
a payload whose weight is approximately that of the drone 
itself - opening the possibility to equip drones with cameras, 
access points and small computing devices, such as the 
Raspberry PI or similar. 
Modern mobile networks provide an unprecedented 
opportunity due to their flexibility and UAVs could represent a 
key deployment technology. Indeed, the 3rd Generation 
Partnership Project (3GPP) 5G networks are expected to 
guarantee short deployment time, in the order of 90 minutes or 
less, thus opening the way for agile deployments in areas with 
limited coverage or network disruption. Such requirement, 
jointly with the expected flexibility deriving from the 
implementation of the 5G Service Based Architecture in the 

core and functional splits in the architecture of the base station, 
makes it possible to integrate UAV platforms. 
To address the above scenario, and for example in emergency 
situations or rural areas, drones might be used as mobile base 
stations (BSs), bringing the network to the user. However, it is 
possible to even go beyond such concept and include 
processing capabilities in the picture, leading to the deployment 
of agile fog/edge computing solutions by bringing the cloud to 
the user through high-altitude platform (HAP) drones, 
delivering backhaul/fronthaul connectivity and services.  
This concept is also defined as the Edge Computing (EC) 
paradigm, which focuses on deploying dynamic services 
capable of following their users. EC guarantees lower 
probability of congestion, higher performance and lower 
latency. However, it requires the definition of proper standards 
and operating environments in order to achieve wide 
deployment and integration within mobile networks. 
ETSI standardization represents a relevant action to bring EC 
technology to 3GPP mobile networks in the form of the so-
called Multi-Access Edge Computing (MEC) framework. MEC 
standards by the European Telecommunications Standards 
Institute (ETSI) provide the framework to deploy MEC 
solutions at the edge of the network, but they leave freedom on 
how to specifically implement those functionalities and to 
satisfy quality-of-service (QoS) requirements. Indeed, the 
operation time scale of QoS-aware resource allocation falls out 
of the possibility of human intervention, and thus it requires 
automation, through the introduction of proper Artificial 
Intelligence or Machine Learning solutions to identify the most 
appropriate allocation capable of satisfying users’ QoS while 
maintaining high utilization of the available resources.   
This paper proposes an architecture compatible with 
ETSI/3GPP standardization, aimed at the actual deployment of 
a flexible and automated MEC solution for deploying 
connectivity and services using a swarm of drones. 
Particularly, mobile BSs work in cooperation with a high-
altitude platform (HAP) (e.g. a balloon or ultra-light vehicles). 
Basically, the drones build the radio access network (RAN) and 
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the edge, providing robust and flexible communications, thus 
representing the programmable network infrastructure used to 
connect users and deploy services in an on-demand framework.  
Additionally, the article analyzes the deployment of network 
slicing to enhance assignment of resources. In particular, 
automation through different algorithms is implemented within  
the Slice Broker, showing the potential of reinforcement 
learning towards flexibility and satisfaction of QoS (e.g. 
transmission rate and latency). 

Overview of Mobile Edge Cloud 
Support for EC is considered by 3GPP a critical enabler of 
efficient service delivery in mobile networks, being able to 
provide reduced end-to-end latency and decreased load on the 
transport network [1]. 5G and beyond networks can be 
considered the natural future environment for MEC 
deployments, since many innovation aspects brought by 5G are 
indeed centered on applications, which are expected to be 
highly heterogeneous with often contradictory requirements 
[2].  
With the purpose of supporting the EC adoption, ETSI has 
started around 2013 the MEC industry specification group 
(ISG). Initially known as Mobile Edge Computing, the 
definition of MEC has been changed to Multi-Access Edge 
Computing in order to accommodate a broader scope. The ISG 
core objective focuses on creating standards that support the 
cooperation between network operators, applications, and 
content providers. The final goal is to boost the overall QoS 
experienced by the user equipment (UE), while optimizing the 
benefits for all players. Currently, both ETSI ISG MEC and 
3GPP are working on bringing Edge Computing into 5G and 
beyond architectures. Recently, the 3GPP SA6 group started to 
work on Edge Computing as an enabler for new vertical 
applications, and 3GPP plans to integrate MEC into 5G in the 
future release 17 [3]. Nevertheless, progress is still needed to 
fully integrate MEC into 5G and beyond architectures. 
 

 
Figure 1 Simplified ETSI MEC reference architecture (based on 
[1]). 

The ETSI MEC reference architecture [4] (see Figure 1), now 
in its second version, includes all the functional entities that 
characterize the MEC and the interfaces between them. 
Functional entities are divided into two groups:  
• MEC system-level entities, e.g. the user app LCM proxy 

and the Mobile Edge Orchestrator (MEO), typically 
deployed in the core network; 

• MEC host level entities, e.g. the mobile edge applications 
and the Mobile edge platform, typically deployed close to 
the UEs. 

The device application residing on the UE leverages the ETSI 
MEC platform to interact with ME applications and services 
residing on edge nodes. These can also be co-located with base 
stations of the cellular network. 
The Edge architecture consists of a ME Platform Manager 
(MEPM) and single to multiple MEC Host Sites. The MECM 
is a server centrally deployed, e.g. in a centralized cloud, which 
controls the deployment of applications on MEC Hosts.  The 
MECM node can be e.g. a Kubernetes Cluster. 
The Mobile Edge Orchestrator (MEO) is responsible for on-
boarding and enabling the Edge Application required by the 
UE. MEO also chooses the optimal MEC host on which to 
deploy the application. This choice may be based on various 
parameters, such as latency, available resources, number of 
users and available services. 
 
MEC Service APIs Refenrece Description 
Application enablement API ETSI GS 

MEC0011 
Service-related 
functionalities. 

Radio Network Information 
API 

ETSI GS 
MEC012 

Wireless network 
status information 

exposure 
Location API ETSI GS 

MEC013 
Location information 

of the terminal 
exposure. 

UE Identity API ETSI GS 
MEC014 

Allows registering a 
tag (ID) for the user’s 

equipment (UE) to 
enforce traffic rules 
for that specific UE. 

Bandwidth Management API ETSI GS 
MEC015 

Edge applications 
running at the same 

time on the same edge 
host can send to the 

MEP their bandwidth 
requirements. 

Device App API ETSI GS 
MEC016 

Lifecycle management 
of the UE client 

application  
WLAN Info API ETSI GS 

MEC028 
WLAN Access 

Information exposure 
Fixed API ETSI GS 

MEC029 
Fixed Access 

Information exposure 

Table 1 A set of APIs for MEC apps. 

The traffic from the UE is steered so that it can reach the 
appropriate Edge Application when needed and processed 
locally. The User Plane Function (UPF) is a fundamental 
component of a 3GPP 5G core infrastructure system 
architecture [1] and is the function  in  charge  of  the routing  
of the user  plane  traffic  to  the appropriate Data Network 



(DN), thus providing the encapsulation and de-capsulation of 
GPRS Tunneling Protocol for the user plane (GTP‑U). In 
MEC, the UPF requires to be configured with appropriate 
traffic steering policies able to redirect traffic to the appropriate 
MEC applications [5].  
The UPF configuration is triggered by the MEP, which, 
supported by the information received by the MEO during the 
application onboarding, interacts with the Mobile Core. In the 
5G architecture, the MEP is expected to be integrated as a 5G 
AF [5].  The MEP may request the redirection of the UE traffic 
to a MEC application as per the request of the MEO via the 
MEPM. 
In order to fully take advantage of the locality of the edge, 
ETSI has defined a set of vendor-independent REST APIs, as 
standardized interfaces, that allow the vendors of user 
devices/applications and edge node applications to interoperate. 
A “MEC application enablement framework” has been defined 
by ETSI to supporting the network exposing information 
towards authorized third-party applications. ETSI has delivered 
seven Group Specifications (Table 1) that define different 
REST multi-access edge service APIs addressing various 
aspects that range from mobile edge service APIs to application 
lifecycle management. The information are made accessible to 
Edge Applications developers through the Mp1 interface,  that 
allows accessing to data either provided by the MEC platform 
itself, such as Radio Network Information (RNI API [6]) or 
location information (Location API [7]), and those provided as 
a services by other MEC applications. Those data services can 
be consumed not just by user-level applications, but also by 
services enabling network performance and QoS 
improvements. 
In particular, the Radio Network Information (RNI)  provides 
up-to-date radio network information to mobile edge 
applications and to mobile edge platforms. Typical information 
that may be provided is, e.g., up-to-date radio network 
information regarding radio network conditions; measurement 
information related to the user plane based on 3GPP 
specifications; information about UEs connected to the radio 
node(s) associated with the mobile edge host, their UE context 
and the related radio access bearers; changes on information 
related to UEs connected to the radio node(s) associated with 
the mobile edge host, their UE context and the related radio 
access bearers [6]. The information can be accessed with 
different granularities, depending if the data is requested e.g 
per cell, per User Equipment, per QCI class or per period of 
time.  RNI may be used by the mobile edge platform e.g to 
optimize the mobility procedures ensuring service continuity or 
inform network-aware and context-aware allocation of 
resources decision processes. 
For connecting MEC Platforms (MEP) in different MEC hosts 
of the MEC system, ETSI introduced the Mp3 interface in the 
reference architecture. The Mp3 could be used, for example, 
for exchange information able to trigger application lifecycle 
management operations supporting mobility. At the moment, 

the platform-to-platform interface over Mp3 reference point 
has not been not specified by ETSI yet.  
Even if the first work on MEC steams from the Mobile and 
virtual machine (VM) ecosystems, the architecture is evolving 
to embrace a scenario that is basically both access and 
virtualization technologies agnostic. 
Using light non-VM based virtualization technologies such as 
containers is of primary importance for edge computing 
deployment in resource constrained environments. As a matter 
of fact, the recent major report [8] released by the ISG as part 
of its Phase 2 work studies the impact of alternative 
virtualization technologies, and specifically it addresses the 
usage of containers in MEC environments. The results and 
conclusion of this report highlight that ETSI MEC architectural 
framework is capable of supporting such technologies, very 
few updates of existing standards.  
Due to its access-agnostic nature, MEC paves the way to 5G 
guaranteeing a smooth transition from 4G to 5G. The 
combination of 5G and MEC is a true enabler for Ultra-
Reliable Low-Latency communications (URLLC). 
In the next session we propose an architecture for Aerial 
Devices that leverages the ETSI MEC framework.  

Novel Proposed Architecture 
The proposed system provides an on-demand Multi-Access 
Edge Computing framework by exploiting the mobility and 
flexibility of Aerial Platforms. We consider the setup described 
in Figure 2, where rapid deployment of network connectivity is 
based on one or more balloons and several drones hovering 
over the area to provide connectivity and services. Both 
balloons and drones are equipped with communication 
interfaces and computing/storage power. In this way, it is 
possible to define end-to-end slices of the available resources 
in order to meet the performance requirements and enable the 
deployment of 5G services. This, in turn, requires proper 
resource allocation in the two major trunks of the system, i.e. 
the backhaul connection and the RAN. 
In the considered scenario, the backhaul connection is provided 
by the HAP drone, which has a longer lifetime than mobile 
BSs, and it can potentially carry bigger weight and cover a 
relatively large area. The RAN is implemented in a distributed 
way through a swarm of drones that are positioned in hovering 
mode in the areas where on-demand coverage is required and 
can be moved to adapt to the users’ distribution.  
 

 



 
Figure 2 The proposed architecture and related resources. 

Both the mobile BSs and the HAP drones can be considered as 
fully operating MEC hosts, deploying ME Applications over a 
virtualized platform, hosting the ME Platform and exposing 
services. Information regarding number of users, radio quality, 
etc. of both UEs (through the drone ME host) and drones 
(through the balloon ME host) are therefore available through 
local MEP services (exposed e.g. by the MEC RNI API and 
MEC Location API) and can be used to better orchestrate the 
limited resources on the drones.  Edge applications running at 
the mobile BSs or HAP drone edge hosts can send to their 
respective MEPs their bandwidth requirements (through the 
Device App API), thus setting the overall system requirements. 
This architecture requires that edge platform-to-platform 
communication happens, e.g. through a standardized interface 
such as the Mp3 interface envisioned by ETSI.  Finally, Edge 
Application orchestration and management can be performed 
on the balloon or ground data center. 
 

 
Figure 3 Logic architecture of the system. 

Figure 3 depicts the logic structure of the proposed system. 
First, end users are characterized by their requirements 

according to transmission rate and latency, which are the main 
components of their required QoS. Second, being Provider 1 
the owner of the RAN infrastructure, it dynamically assigns to 
users network resources, in order to guarantee specific rate and 
access-network latency. Next, resources are allocated in the 
backhaul/fronthaul wireless link which connects the mobile 
BSs (drones) to the aerial MEC data center. This small data 
center not only hosts computational resources for network tasks 
but also the network slice manager (Slice Broker) [9]. 
Moreover, the MEC data center can be positioned on the HAP 
(e.g. a balloon) or located on the ground and connected to a 
balloon using an LTE connection. 
As a consequence, based on the users' requirements, one or 
more end-to-end network slices are built, directly connecting 
the users to the MEC data centers, and providing the requested 
QoS. Indeed, each network slice is characterized by the 
allocation of physical resources, mapped into virtual ones, on 
the RAN and backhaul trunks of the proposed architecture. As 
a result, a percentage of resources (belonging to the access and 
the aerial network) will be abstracted and assigned to a group 
of users in order to satisfy their requirements in terms of QoS. 
We assume the following hypotheses for the mobile BSs: 
• UAVs are mobile BSs, capable of providing radio 

connectivity and limited computing processing power 
(enabling RRH/BBU split and allocation of MEC 
containers). They also collect information from the end 
users and transmit it to the aerial platform; 

• the mobile BSs can be considered hovering while 
providing RAN connectivity [10]. This approximation can 
be considered accurate, since a significant part of the 
literature is focused on optimal placement of drones to 
achieve optimal coverage, signal quality and latency on 
the link drone-end user [11]. Moreover, while such a 
hypothesis will reduce transmission time and need the 
deployment of a greater number of drones per time 
interval, it will positively minimize interference problems 
among drones and the Doppler effect during transmission 
(this will also reduce the complexity of the frequency 
correction). 

• The characteristics of the battery and the size of the 
drones are assumed to carry and supply the hardware of a 
Pico BS plus a small host for containers (e.g. Raspberry PI 
platform). 

The following assumptions are assigned to the HAP drone and 
its small data center: 
• It can host the UAV orchestration framework in order to 

reduce the response time for exact placement or small 
adjustments of position and paths (e.g. similar to the 
paradigms Follow-Me-Cloud or Follow-Me-Edge) [12]. 
However, in cases where a nearby MEC data center on the 
ground is available, the orchestrator might be hosted on 
the ground. 

• The HAP is considered hovering and placed in optimal 
positions according to the locations of mobile BSs. HAPs 
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can establish line-of-sight (LoS) backhaul/fronthaul links 
to the drones they cover. Possible technologies explored in 
the literature for backhaul are mmWave, LTE and free 
space optical communications (FSO). The latter is 
especially efficient and reliable, comparable to a terrestrial 
backhaul [13]. However, in our scenario, it can be 
impracticable to equip drones with optical interfaces 
(small telescopes) to set up the backhaul link. Because of 
that, we assume a broadband wireless link, which can 
guarantee up to 120 Mbit/s to end drones requiring a 
broadband backhaul [13]. 

• The altitude used by Internet.org consortium for aerial 
platforms via HAP is about 19 km, in order to provide 
reliable coverage to a medium-sized urban area. This HAP 
has an altitude between 18-25km [13]. In the scenario of 
this article, the aerial data center will have an altitude of 
about 3 km. In fact, the aerial data center supports 
backhaul/fronthaul of few mobile BSs (the subsequent 
simulations will assume a HAP connected to three mobile 
BSs). 

Analysis, Results and Discussion 
The scenario and the novel architecture, presented in the 
previous section, is modeled via a proprietary network 
simulator written in C++ in order to analyze various aspects 
and parameters of dynamic network slicing. The RAN is 
composed by physical (PHY) and data link layer. PHY uses 
time-division duplexing (TDD) and 20 MHz band. 
The analysis of performance and the satisfaction of users’ 
requirements imply the consideration of various trade-offs. The 
main parameters of these trade-offs are rate, latency, energy 
consumption and computing capability. The communication is 
from the MEC HAP drone to the UEs (downlink). 
Latency has different components: 
• propagation, which depends on the distance between 

network node; 
• transmission, which is inversely proportional to the 

available link capacity at a specific time; 
• processing, which depends on the time needed to 

complete the computing at the servers. 
By increasing the transmission rate, the available capacity 
decreases thus the transmission delay increases. Regarding the 
RAN, the analysis takes into account the variability of BS 
processing time, with LTE transmission downlink delay of 1 
ms. Next, augmenting the computing capability of the data 
centers can significantly affect energy consumption. However, 
the reduction of the computational speed of the CPUs can 
reduce energy consumption while increasing processing delay. 
By considering a simple model of power consumption of a 
server given its frequency (which reflects the usage of the 
CPUs/GPUs) [14], the power consumption is proportional to 
the cube of the clock frequency of the processing units. 
Given a set of computing resources (i.e. CPUs) interconnected 
by internal data center’s links, the Slice Broker assigns a subset 

of these resources to users in order to get values of processing 
latency in line with end-to-end latency requirements of users. 
The number of CPUs at the aerial data center is variable 
between 10 and 20: such range is acceptable since it is 
important to consider that the power supply is limited (in fact 
the aerial platform combines battery and solar power). Each 
CPU has a frequency of 1 GHz, representing a low-cost 
energy-efficient solution, acceptable in such scenarios (e.g. a 
Raspberry pi). 
Next, the simulation allows the Slice Broker to assign network 
slices to three different classes of users:  Extreme Mobile 
Broadband (xMBB) supporting mobile broadband and mobile 
video streaming, ultra-reliable Machine-Type Communications 
(uMTCs) (or URLLC) and massive Machine-Type 
Communications (mMTCs), supporting services such as 
Internet-of-Things (IoT). 
 

 
Figure 4 Flowchart of the Slice Broker’s Strategies. 

The Slice Broker [9] considered in this evaluation context can 
employ different resource management algorithms: 
deterministic or intelligent. The former is represented by a 
best-effort-like algorithm, while the latter is realized via 
reinforcement learning (RL). Figure 4 shows the logic structure 
of the Slice Broker. 
The end user issues an application request to the network, and 
the broker has to divide the QoS requirements of the user into 
two parts as a guide for each provider. Based on the QoS 
requirements, each provider gives the final output, including 
the system capacity, i.e., the maximum number of users that 
can be satisfied, the resource usage of the percentages, as well 
as the true performance per user, such as data rate and latency. 
It is worth pointing out that the true performance should be no 
worse than the QoS requirements, otherwise we conclude that 
these split QoS requirements are not valid. The effective results 
extend to different resource allocation strategies. The first is 
the deterministic policy, which either does not need to consider 
user QoS requirements and directly gives the best performance 
to every user with the highest data rates and lowest latency, i.e., 
best-effort-like, either while meeting QoS requirements to 
allow the maximum number of users to be able to access the 



service.  However, the former strategy has the demerit that it is 
highly unlikely that the system will be able to serve a sufficient 
number of users, while the latter policy may lead to a waste of 
resources, as there will be a situation where many resources are 
allocated but not really used. Therefore, we propose an 
intelligent dynamic strategy that considers the expected number 
of users in advance and then implements a dynamic resource 
allocation. 
Our new intelligent dynamic policy aims to serve all users who 
expect to join the network, while enhancing the corresponding 
performance as much as possible, e.g. when there is still a 
considerable amount of idle resources remaining after meeting 
the minimum QoS requirements for all anticipated joiners, the 
smart dynamic policy will allocate idle resources to users, as 
reflected in an increase in data rate or a decrease in latency. 
This is inspired by the fact that user traffic is dynamically 
fluctuating, fortunately, statistics show that traffic has periodic 
trends, and can be measured and predicted with some degree of 
accuracy. Benefiting from reinforcement learning [15], by 
attempting alternative actions and reinforcing tendency actions 
that produce more rewarding consequences, the optimal 
strategy can be derived from the interactions with the 
environment. Thus, the Slice Broker can use RL and a 
predicted number of users to construct an optimal slicing 
strategy with respect to each time step. 
In RL, one or more states are used to interpret the environment, 
and in each state, an action is selected based on a certain 
strategy. Each action leads to a state transition, and the 
intermediate reward will be used as the numerical evaluation of 
the selected action. At the end of the training process, the 
optimal strategy can be derived from the learning experience, 
and thus RL is widely used for optimization and decision 
problems. 
In order to evaluate our proposed architecture, we have chosen 
one of the most popular RL techniques, Q-Learning [15], in 
which the Q-value represents the estimated expectation of the 
discount cumulative reward for the state-action pair. The values 
of Q at time steps t and t+1 are Q(St , at), and Q(St+1, at+1), 
where at and at+1 are the set of available actions for states St  
and St+1. The maximum Q value implies the best action At for 
state St, which derives from . 
In Q-Learning there is a parameter α (0<α<1) defined as the 
learning rate, and it is to balance the knowledge between 
learned experience and new perception during the training 
process, while the discount rate γ (0≤γ≤1) is to leverage the 
impact of immediate reward Rt and the potential cumulative 
rewards received in the future. The Q-value is updated in each 
training loop, until the terminal state occurs. The training is to 
end when the episodic accumulative rewards are convergent. 
Thus, the optimal strategy is derived. 
We have referred to multiple users’ traffic-flow statistics, and 
we noticed that it is very common to have the rush hours in the 
early morning and late afternoon periodically, therefore, 
combining with the given resource we have designed a 

simulation scenario to mimic the traffic flow for each hour 
during the day. In the scenario we assume that 
• the system has enough resource to fulfill maximum 

expected users; 
• each user (connected to the same mobile BS) has the same 

service request, i.e. the same QoS requirement (they 
belong to the same network slice); 

• each user is either static or with very low speed. 
Particularly, this assumption models verticals such as 
xMBB, IoT, Industry 4.0, etc. (except for vehicular users); 

• the cloud latency only considers the delay received from 
each node. 

 

 
Figure 5 Performance comparison among three different 
strategies used by the Slice Broker. Strategy based on 
reinforcement learning can outperform the deterministic ones by 
concurrently improving users’ performance. 

The Slice Broker splits the user’s request regarding data rate 
and processing latency to both providers, and since in this 
scenario there are only two providers, we can assume that there 
are linear relations between the separated QoS requests, as 
shown in Figure 3. Action is defined as the possible 
combination of the linear relation parameters, a and b.  
The state includes the hourly timestamp and the amount of 
users. RL is a goal-driven algorithm and in this scenario the 
construction of reward function is led by the ultimate goal. This 
means the system should fulfill the QoS requirement for each 
user and should only serve the expected amount of users 
instead of the maximum possible. Thus, the system can assign 
the idle resource to the existing users to improve the 
performance at the non-rush hours. Therefore, the reward 
calculation is separately defined under three conditions.  
When the QoS cannot be fulfilled with the selected splitting 
parameters a and b, the reward R is a negative great value, 

argmax ( , )t t tA Q S a=



working as a punishment. Once the actual performance has 
achieved the QoS requirement (if the amount of possible 
incoming users nu is higher than the expected amount of users 
ne), the reward is then represented as R=10/(nu-ne). Since we 
intend that nu is only slightly bigger than ne. Otherwise, it 
becomes R=nu–ne, which implies that an opposite situation 
from the one in the first assumption above. If the system does 
not have enough resources to fulfill maximum expected users, 
our reward function guides the intelligent dynamic strategy to 
act as the maximum-users strategy. 
Figure 5 shows the hourly normalized performance of the three 
strategies. The normalized values are generated using as 
reference either the amount of expected users or the QoS 
requirement from different aspects. The orange lines in the 
plots represent the simulation results using the best-effort-like 
strategy. From this, we observe that although it provides the 
highest data rate and the lowest latency, it can only serve a 
small number of users. Moreover, it is most likely that the best-
effort-like strategy cannot allow all the expected users to join 
the network, as the orange line in the first plot is lower than 
zero from the fifth hour.  
The simulation results derived from the maximum-user policy 
are plotted as green lines, which show that this policy 
guarantees all expected users access to network services, but it 
can only provide each user with the lowest data rate and the 
maximum latency of the three policies. While the above are 
static, the blue lines are the performance of our intelligent 
dynamic algorithm. As it is evident from the first plot, the blue 
line is dynamically close to zero. While keeping positive, our 
policy always captures the trend of the expected users per hour.  
Combining the last three plots, we notice that while serving all 
the expected users, the normalized usage of our proposed 
strategy is dynamically balanced. Maximum-users strategy 
targets users maximization by reserving resources statically, 
however, in fact often there are fewer service requests, which 
results in a waste of resource. Unlike maximum-users strategy, 
our intelligent strategy assigns the remaining available 
resources to the expected users either reducing latency or 
increasing the data rate. 

Conclusion 
UAVs are expected to become key actors in the framework of 
5G and B5G networks, especially in scenarios where fast 
deployment represents a key requirement. This paper presented 
an architecture to deploy a swarm of drones supported by other 
HAPs (balloons) in order to bring connectivity and services to 
users in a given area. The proposal represents an example of 
solution compatible with current MEC standardization efforts 
by ETSI and represents a step forward in the integration of 
mobile aerial platforms within future 5G and B5G systems. 
Future work will be aimed at considering HAPs at different 
altitudes and generalizing the approach to consider different 
application/QoS scenarios. 
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