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Abstract

Ultra-dense Networks (UDNs) massively populate areas with base stations
of diverse capabilities, thus increasing the network capacity. Moreover, the
radio access network (RAN) architecture moves towards small infrastructure
elements such as mobile small cells (MSCs). In this context, Network-coded
Cooperation (NCC) leverages the interplay between network coding and co-
operative relaying to reliably offload cellular traffic to MSCs and reduce the
power consumption in the network. Despite the research done separately on
NCC and smart MSC deployment, there is a scarceness of works addressing
the smart and on-demand deployment, activation, and deactivation of MSCs
to leverage the benefits of both NCC and MSCs. To fill this gap, in this pa-
per, we: (1) estimate the traffic density of New York by adopting an urban
zoning (UZ) model; (2) provide a methodology for the on-demand deploy-
ment of base stations and MSCs according to a stochastic geometry model;
(3) propose two radio resource management (RRM) models, one random
and one smart, for the placement and on-demand creation of MSCs, and (4)
compare the power consumption of the proposed architecture with 4G edge
computing. The results show that the smart RRM model overperforms the
random model five-fold in terms of number of pico base stations required,
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which impact on the power consumed in the network. Moreover, the results
show that the smart model achieves between 6− 25% power savings in com-
parison to 4G edge computing, the random model, and two approaches form
the related work, respectively.

Keywords: Network-coded cooperation, mobile small cells, power
consumption, cellular networks, stochastic geometry, network traffic, urban
zoning

1. Introduction

As a new generation unfolds, the architecture of the network undergoes a
series of structural changes from the core network to the user. New infrastruc-
ture elements, such as femto/pico Base stations (BSs), fixed/mobile relays,
cognitive radios, and distributed antennas are being massively deployed, thus
making the future cellular networks beyond 5G more heterogeneous [1]. In
this emerging environment, new services and handheld devices increase the
number of internet connections and mobile traffic.

Specifically, it is estimated [2] that by 2023, the number of connections
will be 29.3 billion and that the number of connected devices will reach
13.1 billion in 2022, 71% of which being mobile devices. Reports also show
the steep yearly mobile data traffic growth trend, e.g. 63% from 2015 to
2016 [3], which is expected to continue in years to come. Moreover, a mobile
data traffic increase up to 77.5 exabytes per month was reported in 2017 [2],
from which 82% of that traffic consisted of IP video traffic. In view of this,
and especially in dense urban areas where a massive amount of users coex-
ist, we can argue that today’s network infrastructure is not ready for such
changes, and that a paradigm shift is needed. In this paper, we tackle the
aforesaid problems by jointly considering Network-coded Cooperation (NCC)
schemes along with the deployment of Ultra-Dense Networks (UDNs), briefly
introduced hereafter.

To cope with the increasing demand of video streaming services, NCC [4]
presents an energy efficient method for massive downlink content distribution
in the Radio Access Network (RAN). As the name suggests, NCC involves
some degree of cooperation (C) between the participating nodes in a commu-
nication transmission along with Network Coding (NC) capabilities of such
nodes, hence NCC. In this paper, we are concerned with NCC at the RAN,
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where arrangements of BSs and mobile devices (i.e User Equipments (UEs))
cooperate with each other in order to achieve efficient and reliable communi-
cation [5]. We will refer to this arrangements as Mobile Small Cells (MSCs)
[6] noting that, not only the UEs, but also the BSs are mobile (e.g. via a
drone-mounted BS). In this scenario, the challenges reside in the mobility
nature of the MSCs, meaning that the arrangement and composition of BSs
and UEs in a MSC is dynamic and thus can change over time. Noteworthy,
despite the research done in the area of NCC, there is still a lack of algo-
rithms to efficiently deal with these dynamic scenarios. This paper aims to
contribute to this direction.

In addition to NCC, an effective way to increase the capacity of cellular
systems under high traffic and UE density relies on the large deployment of
low-power BSs with short inter-site-distance (ISD). Typically, when the ISD
falls below 100m, thus creating small cell coverage regions, we refer to these
deployments as UDNs[7, 8]. An additional benefit from UDNs is that network
power consumption can be reduced by conveniently switching on and off
those BSs with no active UE transmissions. In these scenarios, the majority
of adopted traffic models in the literature assume that the offered traffic is
constant. However, in reality traffic variations occur in the time domain (e.g.
morning/afternoon/evening or weekday/weekend) [9], and in the spatial
domain (e.g. residential/commercial/industrial) [10]. Furthermore, traffic
models in existing works are largely based on statistics from huge datacenters
where all traffic is aggregated. This approach may be good if the scope of the
evaluation covers large areas, but it is suboptimal if we look into the traffic
variation at each BS separately. As an example, population fluctuations (e.g.,
due to commuting) can abruptly change the traffic load within a city, and
this directly impacts on the service load that is requested from particular
BSs. We aim to solve this problem by means of a comprehensive, exhaustive,
and more accurate model of the urban area by dividing it into zones. We
call this model Urban Zoning (UZ) and it divides the city into three different
zones, namely: residential, commercial, and manufacturing. Each zone has
already some existing infrastructure with a given number of static micro base
stations (mBSs), i.e. BSs with ISDs in the range of hundreds of meters.

As explained above, the current network infrastructure is not prepared
for the increase in network traffic from upcoming applications and services.
This traffic increase would require the deployment of additional RAN equip-
ment. Unfortunately, changing the number of fixed mBSs would suppose a
huge economic and time investment. As an alternative, in this work, the
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network traffic surplus is offloaded to MSCs, which is defined as a group
of connected mobile devices such as vehicles, drones, high-altitude balloons,
or UEs. Within a MSC, one mobile device assumes the role of a pico base
station (pBS) which provides small cell coverage and connectivity to the rest
of devices conforming the MSC. Among the many possible implementations
of a MSC [6], in this work we will assume that an Unmanned Aerial Vehicle
(UAV), i.e. a drone, is equipped with a pBS providing small cell coverage to
a group of UEs.

Our contribution is four-fold. First, we propose a novel UZ model for the
analysis of the network traffic in the RAN; second, we optimize the mBS and
pBS density to reduce the number of NCC MSCs to minimize the energy con-
sumption in the network; third, we provide two Radio Resource Management
(RRM) heuristics (namely the random model and the smart model) that deal
with the placement of pBSs in the given scenarios (i.e. residential, commer-
cial, and manufacturing); fourth, we evaluate the sensitivity of the scenario
against changes in user density, pBS range (or pBS transmission power), user
mobility, and maximum pBS density and compare the cases with and with-
out MSC deployment. The metrics selected for the sensitivity evaluation are:
power consumed in the RAN, service efficiency, user distribution, pBSs user
density, pBS density, and pBS coverage.

The results present a low Minimum Squared Error (MSE) between the
model and the simulator. Furthermore, the numerical results show total
power savings in the network, especially in the RAN, in comparison to the
4G edge computing. Moreover, the smart model is nine to eleven-fold more
efficient than the random model, depending on the hour of the day and the
urban zone. Finally, we perform a sensitivity benchmark of the smart model
(since it is the best one) under the aforementioned variations in the proposed
scenario. The sensitivity results show a linear impact of the user expectation
and maximum pBS density in the metrics studied. Moreover, the pBS range
and mobility of users present different maximums and minimum that show
different trade-offs.

The remainder of this paper is organized as follows. Section 2 reviews
the related work. Section 3 describes the evaluated scenario. Section 4
models the traffic density in a metropoli. Section 5 introduces the power
consumption models used in the different parts of the network. Section 6
gives an overview of the restrictions applied to the model in the fronthaul
and core network. Section 7 gives an overview of the RAN model. Section 8
proposes an optimization problem to find the optimal number of mBS and
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pBS in the network and introduces two RRM heuristics for the placement of
pBS in the RAN. Finally, section 9 collects the results of the evaluation.

2. Related Work

2.1. Network-coded Cooperation

Ahlswede et al. [11] introduced NC as a technology that increases through-
put and resilience in wireless networks by having intermediate network nodes
perform operations rather than mere forwarding of packets. Among the pos-
sible NC implementations, Random Linear Network Coding (RLNC) [12] is
a popular NC protocol used by streaming services since the intermediate
nodes do not need to know the coding coefficients to forward the packets,
but rather they can generate new coding coefficients as soon as the packets
arrive, which helps reducing the latency of the system. Furthermore, net-
work cooperation [13] has been introduced as a technology that increases
performance in wireless networks. Noteworthy, it has been proven that the
combination between NC and cooperation increases network performance in
terms of throughput and resilience and, as a result, it reduces the energy
consumption of the system [14]. In this context, NCC is introduced as a
combination of RLNC and cooperative relaying that improves the perfor-
mance of the network by increasing its throughput and reducing the power
consumption. Leiva-Mayorga et al. [15, 16] proposed a Markov Decision
Process (MDP) analysis to model the behavior of NCC. Torre et al. [17]
corroborated the results proposed by Leiva-Mayorga by means of a testbed,
which was further extended into a demonstrator, presented in [5]. In view of
the above, we consider NCC as a suitable protocol to enhance the network
capacities and support the increase of traffic.

2.2. Ultra-dense Networks and UAVs

Heterogeneous UDNs [7, 8] has become popular in the recent years to
deal with the increase of the number of devices and cellular traffic. For
example, López-Pérez et al. [18] evaluated the gains in network through-
put, energy efficiency, and Signal to Interference and Noise Ratio (SINR)
of high-frequency bands due to network densification. On the other hand,
Liu et al. [19] addressed UDNs under different scopes such as Heterogeneous
networks (HetNets), massive Multiple-input Multiple-output (MIMO), and
mmWave networks. Similarly, Lu et al. [20] addressed the topic of UDNs
from the perspective of energy harvesting.
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There are different forms to deploy a UDN. Predominantly, the majority
of existing literature considers the static deployment of base stations, e.g. [21].
However, recent technology advancements enable the placement of static BS
functionalities onto mobile devices, thus enabling the MSC paradigm via mo-
bile BSs. Examples of those mobile devices range from medium-sized com-
puting devices on-board vehicles (cars, buses, etc.) to small-sized computing
devices like UAVs (drones), Google balloons, or even UEs with enhanced
capabilities [22]. For small-sized computing devices, the necessary hardware
(i.e. antennas, radio units, etc.) attached to the mobile BSs need to be
power-efficient, compact, and lightweight so that mobile BSs can carry and
power them. Bearing this in mind, pico and femto base stations become the
best candidates to be mounted on mobile devices due to their small size and
low power consumption. In this context, Li et al. [23] proposed a context-
aware optimization for the location of drone base stations. Huang et al. [24],
on the other hand, formulated drone-deployment problems as NP-hard prob-
lems and proposed greedy algorithms with their theoretical analysis. Authors
therein also considered the drone’s battery constraints and the distance on
the air. However, they only considered the deployment of drones along the
streets. On the other hand, in ther work of Li et al. [23], the drones must
not necessarily be along the streets. Finally, Kalantari et al. [25] proposed
a heuristic method to place drones that act as base stations in an area with
different user densities, which attended to the traffic variations over the net-
work. However, the authors did not consider the possibility to move the
drones between the areas, attending to dynamic variations of users densities.

The works presented above, except the latter one, modeled the traffic in
urban areas with similar user densities. However, it is worth noting that the
user density of the network can be also modeled using the server workload.
For example, Bassoli et al. [9] used the server traffic to characterize the traffic
in the network and to provide a comprehensive comparison between 4G and
5G in terms of power consumption. Similarly, Lu et al. [10] used the same
technique to model the cities of London and Manchester with stochastic
geometry. The same traffic distribution can be also observed in the public
data from Google compute clusters [26, 27] and in the daily population in
Manhattan [28]. Unfortunately, huge compute server clusters normally cover
extensive areas and the workload variations do not represent the small scale
network variations that can be found in the RAN. This can be observed in
Manhattan’s population [28], where different neighborhoods have different
distributions.
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3. Scenario Under Evaluation

The target scenario is represented by a metropolitan area consisting of dif-
ferentiated zones, namely: residential, commercial and manufacturing. The
deployed RAN infrastructure consists of mBSs and pBSs, which provide con-
nectivity to both the static and mobile devices. The mBSs, which belong to
the already deployed infrastructure, are stationary and have higher transmis-
sion power than the pBSs, thus covering a wider range. In contrast, the pBSs
are mobile, with shorter coverage ranges, that can eventually be relocated
at any time of the day based on the traffic demands of a particular region.
For this, one may consider, for example, a drone carrying a pBS [29]. In this
described scenario we assume that some legacy infrastructure, i.e. the mBSs,
is unable to support the peaks in traffic load caused by user mobility dynam-
ics and we require the eventual deployment of pBSs over certain regions to
guarantee a good level of service. This scenario is further supported by [2]
highlighting that, by 2022, an important percentage of network connections
will originate from devices on the move. The node’s mobility affect directly
to the amount of traffic that the network will have to support along the day.
The coverage of the base stations is limited and the users will connect to the
closest base station. If many users move to the same location (for example,
because they commute to work), the base stations can be overloaded and
they may not support the requested traffic.

In the described scenario we consider a hardware disaggregation in both
the mBS and pBS into a set of distributed Remote Radio Heads (RRHs)1,
which bear the lower layer processing, and a centralized Baseband Unit
(BBU) pool addressing upper layer and RRM tasks. This RAN architec-
ture is commonly referred to as Centralized-RAN (C-RAN). In this paper,
we consider two options for the placement of the BBU pool, namely, in the
edge network (termed herein as Edge Computing) or in the core network
(termed as Cloud Computing). Fig. 1 shows a graphical representation of
the scenario under evaluation. The fronthaul and backhaul of the scenario
are completely wireless as the one proposed by the Third Generation Partner-
ship Project (3GPP) in [30]. The connection between the RAN and the core
network takes place through microwave aggregation switches. The aggrega-
tion switches multiplex and forward the traffic to the server (containing the

1For convenience, and with a certain notation abuse, we will still refer to mBS and pBS
instead of mRRH and pRRH in the remainder of the paper.
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Figure 1: Graphical representation of the scenario under evaluation.

BBU pool), which is either located in a big data center in the core network
or a small data center at the edge of the network.

The mobility in the proposed scenario is modeled as a random Poisson
Point Process (PPP) that calculates the distribution of users in the whole
area. Towards that end, we take snapshots of the area every hour and derive
the likelihood for a user to be in a certain position. Then, we assume that
the users can move either outside the delimited UZ zone or within their zone,
based on a certain probability and on an estimation of traffic data taken from
the population of the city of New York [28].

3.1. Stochastic Geometry for Functional City Zoning

To model the aforementioned scenario, we resort to the field of graph the-
ory and leverage on the proposed framework by Bassoli et al. [9]. Specifically,
the authors propose the usage of multilayer random hypergraphs, which is
a graph’s generalization which allows edge connections of groups of nodes
(instead of connecting a single pair of nodes). Then, this abstraction is used
to model a wireless cellular network as the one previously described in Fig. 1.
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Let H = (X,E) be the planar hypergraph representing the physical net-
work, where X is the set of nodes, and E is the set of hyperedges. Then, let
H = (X,E,XH, EH, L) be an extension of H, which is the random multilayer
hypergraph where:

• X is the set of random nodes

• E is the set of random edges

• L is the set of layers

• XH is the set of node-layer elements

• EH is the set of edge-layer elements

The set X is divided in multiple subsets X = {XmBS, XpBS, ...}. Each
subset represents the nodes with the same function. In particular,

• XmBS represents the mBS

• XpBS represents the pBS

• Xsw represents the aggregation switches

• Xedge represents the edge nodes

• Xcore represents the core nodes

• XUE represents the users

The sets XmBS, Xsw, Xedge, and Xcore are modeled as PPP with intensities
λmBS, λsw, λedge, and λcore respectively. The set of users XUE is also modeled
as a PPP with a variable intensity λUE that depends on the traffic density T .
Moreover, to model user’s mobility, the set XpBS is divided into two subsets:
the mobile users and the static users. We impose a hard restriction on the
mobile users: They cannot connect to the pBS because the pBS coverage is
small and the users would constantly trigger handovers between BSs. The
set XpBS, the set of pBSs, has a variable intensity λpBS. Two different RRM
heuristics are proposed to determine the density of XpBS: a random model
(see subsection 8.1) and a smart model (see subsection 8.2). The BSs (both
the mBSs and the pBSs) are connected to the nearest aggregation switch in

9

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
the fronthaul to minimize the propagation delay. The aggregation switches
are homogeneous, and thus, they form a Voronoi tesselation. Consequently,

each BS of the j-th tier has an average load of
Nf

λj
, where Nj is the average

fraction of users served by the j-th tier. To minimize the power consumption,
we assume that the BSs are connected to the closest aggregation switch,
which means that each aggregation switch serves the BSs inside its Voronoid
cell. Di Renzo et al. [31] formulated the Probability Mass Function (PMF)
of the number of BSs connected to an aggregate switch as:

P [NBS = n] =
3.53.5 Γ(n+ 3.5)(λBS/λsw)n

Γ(3.5) n! (λBS/λsw + 3.5)n+3.5
, (1)

where λBS is the sum of the intensities of all BSs:

λBS = λpBS + λmBS, (2)

and Γ(x) is the gamma function. We obtain the average fraction of users
served by the j-th tier of base stations, for both the random model and the
smart model. These models are described in subsections 8.1 and 8.2.

3.2. A Primer on Network-coded Cooperation

One of the main objectives of NCC is the massive and real time trans-
mission of data to co-located users in cellular networks. The UEs require
short-range communication links that enables the cooperation among them.
Therefore, the implementation of MSCs by means of deploying nearby pBS
facilitates the use of NCC. In brief, NCC is enabled by three entities [17]:
a content server, a controller, and the nodes forming the MSCs. The NCC
content server is in charge of encoding the information and transmitting it
to the MSCs. The NCC controller is in charge of organizing, creating and
dismantling the MSCs. In addition, in our considered scenario, the controller
is in charge of positioning the pBS to their optimal location (more on this
in section 8). Fig. 2 shows the target scenario and the agents of NCC. More
information about NCC can be found in Chapter 3 of [32].

In NCC, the content server divides the content into data blocks, named
generations, resulting in g packets. Furthermore, each UE has a coding
matrix of size g to store the packets of the generation. In the encoding
process, the encoder multiplies the source packets by a vector of random
coefficients, thus generating a coded packet, which is a linear combination
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Figure 2: Concept of Network-Coded Cooperation [17].

of the packets in the generation. In the decoding process, the coefficients of
the packets received are stored in the coding matrix. The rank of the coding
matrix is defined as the number of linearly independent rows in the coding
matrix. When the rank of the coding matrix is the same as the generation
size g, the UE is able to decode the generation.

Each generation is transmitted to the UEs in two phases, namely the
cellular phase and the MC phase. These two phases can happen simultane-
ously, if the UEs supports Multi-connectivity (MCo), or sequentially, using
Single-connectivity (SCo). Noteworthy, in the case of MCo, if some packets
get lost during the broadcast phase, the UEs will have to wait until the errors
are corrected. The two NCC phases are briefly described hereafter:

1. Cellular Phase: We consider the cellular channel can be multiplexed
in either time or frequency. At the beginning of the broadcast phase,
each UE receives an index number, namely the UE identifier (UEID).
Then, the server distributes the content to every UE inside the MSC
in a round robin fashion, starting with the UE with the lowest UEID.
At the end of this phase, each UE receives around (g + c)/n packets
(depending on the UEID), where g is the generation size, c is the extra
coded packets added per generation, and n is the number of UEs in the
MSC.

2. MC Phase: The relaying phase can run agnostic to the cellular net-
work. In this phase, the UEs distribute the packets received from the
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broadcast phase and they eventually decode the generation when the
rank of the coding matrix reaches g. The pBS creates a Time-Division
Multipling (TDM) schedule in which each UE is assigned a timeslot,
which depends on the previous index assigned by the NCC controller.
In each timeslot, a different UE multicasts a packet to the multicast
group in the MSC. By doing so, the resources in the MSC are dis-
tributed uniformly. It is worth noting that the timeslots in this phase
do not need to have the same length as in the broadcast phase since
data rates from both phases may be different.

At the end of the MC phase, each UE has received at least g linearly
independent packets, which enables the UE to decode the generation.
If the number of linearly independent packets received by the n-th UE
is gn < g, the generation is said to be partially decoded.

The use of NCC results in less power consumption for both the UEs and
the cellular Access Point (AP), higher downlink throughput, and cellular
traffic offload. In previous works [16, 17], we have presented the impact of
NCC on the aforementioned metrics for different configurations. In particu-
lar, this article leverages the analysis of the power consumption reduction as
the MC size, which refers to the user density in the MC, changes.

4. Urban Zone Traffic Density Distribution

The UZ model for the metropolitan area divides the city into three dif-
ferent zones, namely: residential, commercial and manufacturing zones. Un-
fortunately, traffic models characterizing these zones are missing in the lit-
erature. Therefore, in this section we provide some estimations based on
population density and mobile device penetration studies.

The city of New York has recently published several reports [33, 34, 28, 35]
that allows the calculation of the population density for each of the zones dur-
ing weekdays. In particular, [35] helps to identify and divide the urban zones
into groups. Then, [33], [34], and [28] helps to estimate the population in the
different zones and to extend it to the New York scenario. Consequently, the
mean value provides reliable data of the population distribution in the three
zones separately. It was observed that the population distribution during
each weekday is similar to each other and, likewise, the population distribu-
tion during each of the weekend days. Hence, the population density can be
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averaged over weekdays and weekend days and summarized in the population
density over the weekdays and weekends, respectively.

Let A = {residential, commercial, manufacturing} be the set of zones
in the urban area. Let δa(t) be a Random Variable (RV) of the population
density per square kilometer (km2) of the zone a ∈ A at a given time of the
day t. Then, let Ta(t) be a RV that defines the traffic intensity per km2/hour
in the zone a. Ta(t) depends on the population density of the zone a, δa(t),
the number of devices per capita c, and the average traffic a device generates
per hour rhour. Then, Ta(t) is calculated as:

Ta(t) = δa(t) · c · rhour ∀a ∈ A. (3)

The number of devices per capita and the monthly traffic generated by the
different connected devices are extracted from Cisco’s reports from 2017 [2]
and 2018 [36]. In our scenario, these values are 13.4 and 1.4GB, respectively.
This allows the calculation of rhour as the average monthly traffic divided by
the number of hours per month. Let D = {tablets, PCs, TVs, Smartphones,
Machine-to-machine type communications (M2M), others} be the set of con-
nected devices included in Cisco’s report [2, 36]. The average traffic of a
device can be calculated as:

rhour = 1/|D| ·
∑

d∈DNd · Td
hmonth

, ∀d ∈ D (4)

where |.| represents the number of elements in D, Nd is the percentage of
connected devices of type d, Td is the average monthly traffic generated from
a device of type d, and hmonth is the number of hours per month. The
distribution of the number of connected devices is very likely to depend on
the city zones (for example, the manufacturing zone is expected to have more
M2M communications that the residential zone). This would imply that Nd

depends on the zone a, i.e. Nd(a). However, no references that could defend
this statement were found in the literature and thus, we will assume equal
percentage of devices of type d irrespective of the considered zone.

Finally, by combining (4) into (3), we obtain the traffic intensity distri-
bution over a weekday and weekend day, which is plotted in Fig. 3. In it, we
observe that the traffic in the residential area increases during the morning
(before people go to work) and in the evening (after people go to work). On
the other hand, the traffic in commecial and manufacturing areas increases
during working hours. This behavior is expected since commercial and man-
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(a) Working days (b) Weekends

Figure 3: Hourly distribution of traffic density over the day.

ufacturing areas are expected to have more population (and therefore, more
traffic) during working times. The traffic peak in commercial areas is higher
than in manufacturing areas. This is also expected since commercial areas
normally consist of huge skyscrapers with lots of officies for many people
while manufacturing areas contain also wide industrial warehouses and fac-
tories.

When comparing zone by zone, we note that the traffic intensity variations
during weekends are negligible in comparison to the traffic density variations
during weekdays. Consequently, we focus on the worst case scenario, which
takes place during the weekdays.

5. Power Consumption Model

This section encompasses the power consumption models used for the UZ
scenario proposed in section 3. Most of the models are adopted from the
EARTH european framework FP7-ICT [37]. In this work, we particularly
focus on the downlink since the main focus of NCC is downlink data dissem-
ination. Let Ptot be the total power consumption in the network, obtained as
the sum of the individual power consumed in every element of the network,
hence:

Ptot = PRAN + Psw + Pedge + Pcore, (5)

where PRAN , Psw, Pedge, and Pcore are the power consumed in the RAN, in
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the aggregation switches, in the edge nodes, and in the core nodes. It should
be noted that the power consumed by the UEs is negligible in comparison to
the power consumed by the network [38] and it is therefore not considered in
this work. Moreover, the power consumed scales with the number of devices
so the total power consumed depends on the extension of the territory that
we want to cover. In order to have comparable metrics we use density values.
For example, instead of the total power consumed from mobile base stations
we use the power consumed density per square kilometer.

5.1. Power consumed in the RAN (PRAN)

The power consumed in the RAN is calculated as the sum of the power
consumed in the corresponding base stations (pBS and mBS), taking into
account that they only include the RRH, as we discussed in section 3. PRAN
is calculated as:

PRAN =

Ntot
mBS∑

j=0

Pj,mBS +

Ntot
pBS∑

i=0

Pi,pBS. (6)

where N tot
mBS and N tot

pBS are the total number of mBS and pBS in a square
kilometer and Pj,mBS and Pi,pBS is the power consumed by the j-th mBS
and i-th pBS, respectively. However, due to the PPP distribution of users on
average it can be assumed that Pj,mBS = PmBS for every j = {0, 1...NmBS}
and Pi,pBS = PpBS for every i = {0, 1...NpBS}. Hence, equation (6) can be
simplified to

PRAN = NmBS · PmBS +NpBS · PpBS. (7)

where NmBS and NpBS are the density of mBS and pBS in a square kilometer.
Furthermore, the consumed power model for a base station x ∈ {m, p} can
be linearly modeled depending on the load [39]:

PxBS = (1− ρxBS)P idle
xBS + ρxBSP

max
xBS (8)

where P idle
xBS and Pmax

xBS are the power consumption of the base station x in idle
and maximum load, respectively. Furthermore, pBSs allow the use of NCC
due to their short range, assuring small distance between the users connected
to a specific pBS. Consequently, the power consumed in the pBSs (PpBS) is at

the same time multiplied by the energy reduction factor ENCC(λpBS) [17, 40].
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5.2. Power consumed in the aggregation switches (Psw)

The power consumption of the aggregation switches can be decomposed
into the consumed power during internal switching during mux/demux pro-
cesses and the consumed power of the transmission/reception over their in-
put/output links. The fronthaul and backhaul considered in this study are
assumed to be wireless, that is, the aggregation switches operate over wire-
less interfaces. The power consumption in the aggregation switches scale
with the density of base stations (NBS), the load of each base station n (ρn),
the number of antennas (Nn

ant), the wireless link transmission power (P n
link),

and the consumed power of the switches due to the mux/demux processes
(P n

switch) [41]:

Psw = NBS · P n
switch(ρn) +Nn

antP
n
link(ρn), (9)

where ρn corresponds to the aggregated load at the switch normalised by the
maximum load.

5.3. Power consumed in the edge and core nodes (Pedge, Pcore)

The edge and core nodes can each be represented as a 3-tier network. The
edge nodes comprises aggregation switches and servers where aggregation
switches route the traffic to the servers, being the leaf nodes. The power
consumption is the sum of both component nodes [42] and is expressed as
follows

Pedge =
∑

Nesw

Pesw +
∑

Nes

Pes, (10)

where Pesw and Pes is the power consumed in the edge switches and servers
respectively. Similarly, the core nodes can be represented by a 3-tier network
consisting of core switches and core servers. The power consumption of the
core nodes is given by

Pcore =
∑

Ncsw

Pcsw +
∑

Ncs

Pcs, (11)

where Pcsw and Pcs are the power cosumed in core switches and cores servers
respectively. The power consumption follows a linear dependency to the
load in the switches and the servers of both the edge and core networks.
This dependency, in the edge network, is given by
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Pesw = (1− ρesw)P idle
esw + ρeswP

max
esw , (12)

Pes = (1− ρes)P idle
es + ρesP

max
es , (13)

where ρes is the load of the edge network, P idle represents the consumed
power in idle and Pmax represents the consumed power with maximum load.
Then, in the core network, this dependency is given by

Pcsw = (1− ρcsw)P idle
csw + ρcswP

max
csw , (14)

Pcs = (1− ρcs)P idle
cs + ρcsP

max
cs , (15)

where ρcs is the load of the core network, P idle represents the consumed power
in idle and Pmax represents the consumed power with maximum load.

6. Fronthaul and Core Network Restrictions

6.1. Computation effort per UE and per BBU

The power consumption at the server can be estimated based on its load,
as the sum of the requested computation effort by all users [42], or the Giga-
operations per Second (GOPS) per user [43]. In this paper the computation
effort is based on GOPS, Eu per user u, and given by

Eu = (3Au + A2
u +

1

3
MuCuLu) ·

Ru

10
, (16)

where Au is the number of used antennas, Mu the modulation bits, Cu the
code rate, Lu the number of spatial MIMO-layers and Ru the number of
assigned Physical Resource Blocks (PRBs). The number of assigned PRBs is
variable and depends on the requests of each user and the resources available
in the network.

Now, let B be the set of BBUs and UBBU
b ⊆ XUE be the subset of users

that request resources from the b-th BBU. For simplicity, it is assumed that
every user generates the same computation effort to the BBU. Consequently,
the overload of the j-th BBU, hereafter denoted as Oj, can be defined as:

OBBU
b = max(0, UBBU

b · Eu − Cb) (17)

where Cb is the capacity (in GOPS) of the b-th BBU.
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6.2. Fronthaul Capacity

The capacity of the fronthaul link in the base stations supposes an im-
portant bottleneck since many users coexist in a small area. The data rate
(in bps) generated by each user depends on the coding ratio, the modulation
bits, the number of antennas, and the number of PRBs assigned to that user,
which in 5G New Radio (NR) is given by

DRu = Nsym ·Nsub · Cu ·Mu ·Ru (18)

where Nsym, Nsub, Cu, Mu, and Ru are the number of symbols, the number of
subcarriers, the coding rate, the modulation bits, and the number of PRBs,
respectively. The aggregated fronthaul bandwidth required by the users that
are served by the n-th base station is defined as

RFH,n =

XUE∑

u=0

bu,n ·DRu, (19)

where bu,n is a binary variable equal to 1 when user u is served by the n-
th base station and 0 if not. Assuming a linear correlation between the
consumed power and the load of the fronthaul link [44], the power consumed
by the fronthaul link of the n-th base station is given by

PFH,n =
RFH,n

Cn
· Pmax

FH,n (20)

where PFH,n, RFH,n, Cn, and Pmax
FH,n are the power consumption, the aggre-

gated data rate, the maximum capacity, and the maximum power consumed
in the fronthaul link towards the n-th base station.

Now, let UBS
n be the set of users that are served by the n-th base station.

Then, assuming that every user generates the same traffic, the overload of
the n-th base station, hereafter denoted as OBS

b , can be defined as

OBS
n = max(0, RFH,n − Cn) (21)

where RFH,n is the aggregated fronthaul data rate of the n-th base station.

7. Radio network parameters and models

The path loss models are used to calculate the average coverage per base
station. The path loss models for microcells (PLm) and picocells (PLp) are
defined in the 3GPP TR 138 901 R14 [45] as
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PLp = 32.4 + 17.3 · log10(d) + 20 · log10(f) (22)

PLm = 32.4 + 21 · log10(d) + 20 · log10(f) (23)

where d is the distance from the UE to the antenna and f is the carrier
frequency. In this equations, we are assuming line of sight for the pBS since
they are going to be mobile and we can move them accordingly, avoiding
blind spots. Moreover, regarding the mBS, it should be noted that TR 138
901 R14 [45] also defines a threshold under which the path loss model of
microcells in (23) is valid

dbreak = 4 · hm · hu · f/c (24)

where hm is the height of the microBS, hu is the height of the user, and
c is the constant of the speed of light in vacuum space. For example, for
f = 5GHz, hm = 32m, and hu = 1.5m, dbreak = 3.2km. In UDNs it can
be assumed that this model is valid since the high density of base stations
has a direct implication that the range of these base stations is going to be
small. TR 138 901 R14 [45] also defines a threshold stating that the mBS
must have a range over 10m range. We assume that the mBS will have at
least 200m range and therefore, this threshold does not affect us.

The path loss models are used to calculate the SINR, which is required to
obtain the range of pBSs and mBSs. The SINR (γp(dj)) a user perceives from
the j-th pBS, which is located at a distance dj, is obtained by the following
equation [21]:

γp(dj) =
P
pBSj
out hxjd

−α
j

Ntot
pBS∑

i=1,i 6=j
P pBSi
out hxd

−α
i +

Ntot
mBS∑

i=1,i 6=j
PmBSi
out hxd

−α
i + σ2

(25)

where P
pBSj
out is the transmission power of the the j-th pBS, hxj is the Rayleigh

fading between the user and the j-th pBS, α is the path loss element, and
σ2 is the constant additive noise power. Finally, the user is in coverage if:

γp(dj) > θj, (26)

where θj is the SINR threshold for the j-th pBS. In the case that all pBSs
have the same capabilities then θj = θ∀j ∈ N tot

pBS is assumed. Equation (25)
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states that the SINR from a user to the j-th pBS does not only depend on
the distance to the j-th pBS but also on the distance to the remaining base
stations in the network. Moreover, equation (25) also shows that closer base
stations to the user have more impact on the SINR than the ones further
away. The scenario presented has a variable number of base stations, where
some of them are mobile. Unfortunately, there are no methods to estimate the
SINR in an area with so many different unknowns. However, considering that
the effect of further base stations is reduced to beamforming, we can assume
that SINR is upper bounded by the closest interfering base station [46].
Consequently, the next objective is to derive an expression for the distance
of a user to the closest base station.

Towards that end, we calculate the minimum distance between xu (the RV
with the position of the user in R2) and XmBS (a set of RV with the positions
of NmBS mBS in R2) in a map n− by − n where n is the number of tens of
meters. Then, let d{·} be the operator that calculates the distance between
two points in R2. The minimum distance (dminmBS) between xu and XmBS is
the minimum of the distances between xu and xmBS, for every xmBS ∈ XmBS.

dmin , min d{xu, XmBS}
dmin = min [d{xu, xmBS}] , ∀xmBS ∈ XmBS. (27)

The utilization of NCC implies longer minimum distances [40]. In order
to calculate the minimum distance, we developed a simulator that computes
dmin for every value of xu, XmBS, and n. We evaluated the results of the
simulator for lower values of xu, XmBS, and n to extrapolate the results to a
fitting equation that only depends on dj. The MSE due to the extrapolation
process is 3.03 · 10−6.

Assuming that the closest interfering base station is an mBS, the mini-
mum distance dminmBS can be included into equation (25) to obtain the max-
imum distance dj between the j-th pBS and the user to provide a SINR
γp(dj) > θj. In particular, we calculate γp(dj) for the case where only the
closest mBS is interfering. In a similar manner, the minimum intercell dis-
tance between pBS (dminpBS) can be obtained from equation (25), taking into
account the distance dj obtained from evaluating γp(dj) for dminmBS. As a re-
sult, we observe a linear relation between the distance of the serving pBS
and the interfering mBS/pBS that is defined by

20

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
dminmBS(dj) = 4.57d (28)

dminpBS(dj) = 1.27d. (29)

It should be noted that the calculation of minimum distance takes into
consideration the application of NCC to pBSs, which, based on the user
density in the pBS, impacts on the power consumed [40].

8. Optimal mBS Density and pBS Density per City zone

The RAN infrastructure consists of a fixed part (the mBS) and a mobile
part (the pBS). The fixed nature of mBSs implies that the mBS density
calculation must be done separately for each zone. The mBS density is
defined by the mBSs available by the exisitng RAN infrastructure which
depends on the city zone. The existing mBSs set a lower bound on the
mBS density. This number depends on many factors such as the maximum
network traffic or the population. Instead of using the existing infrastructure,
we optimize the mBS density so that the power consumed in the RAN is
minimized. It should be noted that the BS density is not defined by the
deployed BS that can be available but by the actual active BSs. Hence, the
problem can be defined as follows:

min PRAN
tot (T, t)

min NmBS · PmBS(T, t) +NpBS(T, t) · PpBS(T, t) (30)

where NpBS and NmBS are the pBS and mBS densities respectively, PpBS and
PmBS is the average power consumed for pBSs and mBSs, and T is the traffic
density from Fig. 3. Then, let U, M, and P be the set of users, mBS, and
pBS in the network, respectively. It should be noted that T also depends on
t, the time. The minimization of Ptot(T, t) has the following constraints:

a) bu,x ∈ {0, 1} ∀u ∈ U, x ∈ [M ∪ P]

b)
∑
u∈U

∑
p∈P

∑
m∈M

(bu,p + bu,m) = 1

c)
∑
u∈U

∑
p∈P

∑
m∈M

(bu,p · bu,m) = 0
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d) PpBS(T, t) = Pmob
pBS + (1− ρpBS)P idle

pBS + ρpBSP
max
pBS

e) PmBS(T, t) = (1− ρmBS)P idle
mBS + ρmBSP

max
mBS

f) ρpBS(t) =
rNCC(λpBS) · TpBS(t)

NpBS · CpBS

g) ρmBS(t) =
TmBS(t)

NmBS · CmBS

h) Pmob
pBS = (c1 · (wUAV + wbattery + want) · c2) · tair

i) CmBS = CpBS = CBS

j) Nmax =
Tmax

CmBS

k) NmBS ≤ Nmax

l) Nmin
mBS = NmBS |

∫ t+1

t
PmBS(T, t)dt ≤ ∆P

mBS(0)

m) Nmin
pBS = 0

where bu,x is a binary variable equal to 1 when user u is served by base
station x. Constraint (a) establishes a binary decision. Constraints (b) and
(c) establish that a user must be connected to one and only one base sta-
tion. Constraints (d) and (e) follow the energy consumption model from
section 5.1. The constraints are an adaptation from constraint (8). Con-
straints (f) and (g) represent the average load for pBSs and mBSs. The
factor rNCC(λpBS) represents the increase of supported load due to NCC and
it depends on the average user density in the pBSs. NCC is not applied in
mBS and thus, the term rNCC(λpBS) is not present in constraint g). Con-
straint (h) shows the mobility cost in terms of power consumption of the
pBS, considering that the mobile pBSs are located on UAVs. The values
are taken from a linear regression of an experimental evaluation from Tseng
et al. and the coefficients c1 and c2 have the values 160 and −60, respec-
tively [47]. Then, wUAV , wbattery, and want are the weights of the UAV, an
external battery to increase the flying time of the UAV to one hour, and
the pBS antenna. Finally, tair is the time it takes for the UAV to move be-
tween designated locations. Constraint (i) indicates that the mBS and pBS
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capacity is equal and with a constant value CBS. Constraint (j) calculates
the maximum density of base stations based on the maximum traffic and
the capacity of the base stations. Constraint (k) establishes an upper bound
for the maximum density of mBS. Constraint (l) indicates that the mini-
mum mBS density corresponds to the mBS density such that a new mBS
would decrease the utilization of the mBS. Moreover, constraints (l) and (m)
establish a lower bound for the number of mBS and pBS.

The minimization problem is evaluated for NmBS
min ≤ NmBS ≤ Nmax along

the hours of the day. As a result, equation (30) can be redefined as a function
of t and NmBS

PRAN
tot = f(t, NmBS). (31)

The objective is to minimize PRAN
tot with a constant number of NmBS,

hereafter denoted as the optimal number of mBS (N opt
mBS) to minimize the

power consumption. This is given through the integration of PRAN
tot over t,

defined by

N opt
mBS

, NmBS |
∫

t

PRAN
tot (t, NmBS)dt, (32)

which concludes the characterization of N opt
mBS

. The traffic generated per
user is 262.688 MB/h and the number of supported users per BS is 171. In
the residential area, there are 59 fixed mBS/km2 out of 78 BS/km2. In the
commercial area, there are 132 fixed mBS/km2 out of 190 BS/km2. In the
manufacturing area, there are 61 fixed mBS/km2 out of 86 BS/km2. Fig. 4
(right side) shows the results of equation 32 for the scenario proposed.

Next, the optimization problem to find the minimum pBS density to
minimize the power consumption in the RAN and provide the necessary
network resources to support the network traffic peaks is investigated. On the
contrary to the optimization of NmBS, the mobility nature of pBSs enforces
to find the optimal pBS density as a joint optimization problem for the three
zones together. Consequently, the objective function can be described as

min PRAN in A

min
∑

a∈A

[
Na
mBS · P a

mBS(T, t) +Na
pBS(T, t) · P a

pBS(T, t)
]

(33)
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(a) Power map (Residential) (b) Cumulative power (Residential)

(c) Power map (Commercial) (d) Cumulative power (Commercial)

(e) Power map (Manufacturing) (f) Cumulative power (Manufacturing)

Figure 4: 3D power maps and aggregated power for residential, commercial, and manu-
facturing zones for different NmBS .
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The constraints in equation (33) are also applied in equation (30). In
addition, the pBS density needs to be high enough to cover the traffic sur-
plus that was not covered by the mBS. Consequently, equation (33) has the
constraints (a)) - (m)) plus the following:

n) OBBU
b = 0 ∀b ∈ B

o) OBS
m = 0 ∀m ∈M

p) OBS
p = 0 ∀p ∈ P

where constraint (n) establishes that any BBU can be overloaded and con-
straints (o) and (p) establish the maximum bandwidth requested to the mBS
and pBS, respectively. Constraint (33) is solved by using two different RRM
heuristics explained in the following subsections.

8.1. RRM model: Random pBS Placement

In the random model, the pBS are placed randomly as a PPP. Since the
transmit power of the base stations is heterogeneous, the coverage is modeled
as a weighted Voronoi tesselation. Dhillon et al. [21] proposed a method to
obtain the fraction of users Nj connected to base stations of type j, if all base
stations and users are modeled as PPP, and some users can only connect to
a subset of the set of base stations. Nj has the following distribution

Nj =





λj P
2/α
trx,j θ

2/α
j∑2

i=1 λi P
2/α
trx,i θ

2/α
i

j ∈ B,
0 otherwise.

(34)

where Ptrx,j is the power to transmit, θj is the SINR threshold of the base
station of the j-th type, α is the path loss element, and B is the subset of
the set of j-th type of base stations to which the UE can be connected to.

The random model does not allow for any improvements in the position
of the pBS or on the optimization of the number of users a pBS can handle.
Consequently, there are no restrictions on the minimum or the maximum
number of connected users to pBS apart from physical restrictions, such as
sufficient SINR to receive the signal or sufficient available capacity. Algo-
rithm 1 contains a pseudocode of the random model.
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while Total BBU overload OBBU
b > 0 do

Set random pBS in map;
Get new BBU overload;

end
Algorithm 1: Pseudocode for the random model

8.2. RRM model: Smart pBS Placement

In the smart model, the pBS are placed in the best position to cover as
many users as possible. In other words, there is an entity that controls the
position of the pBS and tells them where to move at any time. This entity,
named placement controller (PC), periodically monitors the traffic in the
area and moves pBS to the optimal position to cover the maximum number
of users. This increases the user density inside the pBS, which decreases the
number of pBS and, in the end, improves the efficiency of the system.

The controller monitors the network and places the pBSs one by one.
Let Λk be a RV that defines the user expectation of the k-th pBS placed.
The users are distributed randomly with intensity λUE around the map with
size NxN and area Atot(N). Due to the stationary property of the PPP,
there is a linear correlation between the intensity λUE and the area under
evaluation. Finally, let ApBS be the area covered by a pBS. The PMF of the
user expectation in the first pBS is

Pr [Λ0 = λ0] = λUE ·m ·
ApBS
Amap(N)

, (35)

where m is a RV that models the probability of a user to be mobile. Building
on this, the k + 1-th pBS is placed in the next best optimal place after the
the k-th pBS and the expectation Λk+1 < Λk. The difference between Λk

and Λk+1 can be estimated as

Λk+1(λ) = Λk(λ− λk) for λ ≤ λUE. (36)

Moreover, the area covered by the k-th pBS is affected by the number of
mBS and pBS. The impact of the number of mBS and pBS is modeled in
section 7, which is used to obtain the average radius of the pBS, and hence,
the average area of the pBS ApBS. The higher the number (or density)
of pBSs, the smaller the the ApBS and the number of pBS changes in each
iteration. However, for simplicity of the model, this number has been reduced
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to the factor 1/dpico2pico, which is the ratio between the pBS distance and the
pBS minimum intercell distance to provide an SINR γp(dj) > θj. Building
on this reasoning, the distribution of Λk can be defined as

Pr [Λk = λk] = (λUE ·m−
k−1∑

i=1

λi) ·
(1/dpico2pico) · ApBS

Amap(N)

. (37)

The probability from (37) gives the user expectation of the k-th pBS
placed on the map. However, the controller monitors the traffic in the net-
work to place the pBS in the optimal position given NCC is used. Or in
other words, the controller evaluates Λk in every potential pBS location and
takes the optimal value. Consequently, let Yk,n be a RV with the maximum
Λk over n occurrences defined by

Yk,n = max{Λk,1,Λk,2, ...,Λk,n}, (38)

These are various occurrences of an independent and identically distributed
PPP. The Cumulative Distribution Function (CDF) of the maximum Λk

among different occurrences of a PPP with the same expectation is calculated
as the CDF to the power of the number of occurrences [48].

Pr [Yk,n ≤ y] = Pr[P (Λk,1 ≤ y) ∩ ... ∩ (Λk,n ≤ y)] (39)

Pr [Yk,n ≤ y] = Pr[Λk ≤ y]n.

The value of n is the number of possible locations for the new pBS taking
into account the use of NCC and it depends on the map size N and the
number of pBS already on the map. The value of n is estimated as

n(N, k) = Atot(N − 2 · rpBS)−
k−1∑

i=1

ApBS(i). (40)

The algorithm described in 2 contains the pseudocode for this model

9. Evaluation

In this section, the evaluation of the analytic models is presented. First,
we introduce the parameters and metrics selected for the evaluation. Next,
we present the results of the analytic models. Then, we validate them by
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while Total BBU overload OBBU
b > 0 do

Get traffic load in all base stations;
Estimate users from traffic load;
MAX pBS LOAD ← 0;
foreach pBs position in potential pBS positions in map do

Get estimated pBS load;
if Estimated pBS load > MAX pBS LOAD then

MAX pBS LOAD ← Estimated pBS load;
Optimal position ← Current position;

end

end
Calculate new pBs range;
Calculate new average pBS density;
Calculate new average pBS user density;
Get total BBU overload;

end
Algorithm 2: Pseudocode for the smart model

means of the MSE. We compare the analytical results with the ones from
a Monte Carlo simulator. Finally, we perform a sensitivity analysis on the
parameters that we initially introduced at the beginning of this section.

9.1. Parameters and assumptions

The selection of parameters are collected from a wide range of works due
to the extensive scope of the evaluation. Tables 1 to 4 collect the parameters
used in the simulation. The mobility factor, m, ranges from 0 to 1 and
corresponds to the probability that a user is mobile. For example, if m = 0.2
there is a 20% chance that a user is mobile and an 80% that the user is static.

9.2. Metrics

This subsection collects the metrics used to measure the performance of
the models and their efficiency. The metrics used are the following:

• Validity of the models: The validity of the models is assessed by
means of the MSE between the models and a simulator. Towards that
end, a Monte Carlo simulator was built in Python.
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Carrier Frequency[49] f 5 GHz

Channel bandwidth[49] BW 20 MHz

Number of antennas per UE[49] Au 4

Modulation bits per UE[49] Mu 6

Code ratio[49] Cu 0.553

Number of MIMO layers per UE[49] Lu 4

User mobility factor[2] m 0.5

UAV Power slope[49] c1 160

UAV Power offset[49] c2 −60

Weight UAV[49] wUAV 1800 gr.

Table 1: User and UAV parameters for simulation

SINR threshold mBS/pBS[21] θBS 1

Path loss element mBS/pBS[21] αBS 2.7

Transmission power mBS[39] P out
mBS 6.3W

Transmission power pBS[39] P out
pBS 0.13W

Power in idle for mBS[39] P idle
mBS 15.44 W

Power in idle for pBS[39] P idle
pBS 2.46 W

Power in max load for mBS[39] Pmax
mBS 81.26 W

Power in max load for pBS[39] Pmax
pBS 7.26 W

Table 2: RAN parameters for simulation

• User density in pBS (DpBS): The average user density increase in
pBSs indicates a better utilization of the resources in the network. The
user density in pBS (DpBS) is defined as

DpBS =

∑
u∈U bu,p
NpBS

. (41)

A higher DpBS means that the number of required pBS decreases, which
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FH/BH antennas per mBS/pBS[41] Nant 2

FH/BH capacity for mBS/pBS[44] CBS 100 Mbps

FH/BH power max load mBS[44] PBH
max,mBS 50 W

FH/BH power max load pBS[44] PBH
max,pBS 50 W

Power region for low/high traffic[41] Plow/high 37/92.5W

Traffic threshold low/high[41] Cthr 0.5 Gbps

Switch maximum capacity[41] Cswitch 36 Gbps

Table 3: Fronthaul and backhaul parameters for simulation

Power of the edge router in idle[50] P idle
esw 120 W

Max power of the edge router[50] Pmax
esw 0.44 W

Numer of hops edge router[50] he 3

Power of the core router in idle[50] P idle
csw 215 W

Max power of the core router[50] Pmax
csw 0.44 W

Numer of hops core router[50] hc 6

Power of the datacentre switch in idle[42] P idle
es 200 W

Power of the datacentre server in idle[42] P idle
cs 544 W

Max power of the datacentre switch[42] Pmax
es 300 W

Max power of the datacentre server[42] Pmax
cs 750 W

Server capacity[41] Cb 324 GOPS

Table 4: Network and datacentre parameters for simulation

at the same time decreases the power consumed in the RAN and thus,
the total power.

• pBS density (NpBS) and UAV density (NUAV ): The mobility fea-
ture of pBSs enables network resources to be moved between city zones.
Consequently, the pBS density depends on the zone. Moreover, the
extension of each zone is not the same, which means that the contri-
bution of required pBSs of one zone is different from the contribution
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of another zone. For example, if 10 pBSs per km2 are required in the
commercial zone, they can split into two groups of 5 pBSs and move to
two residential zones and, in the same way, two groups of 5 pBSs from
two different residential zones can merge into one group of 10 pBSs
and cover one commercial zone with higher pBS coverage and capacity
requirements. Consequently, the pBS (and UAV) density must depend
on the relative extension of the zones in the total map. As a result, the
pBS density per zone is multiplied by a weight (wa), which represents
the fraction of the zone of type a in the scenario under evaluation. For
the city of New York [33, 34, 28], these values are wr = 0.7, wc = 0.2,
and wm = 0.1 for the residential, commercial, and manufacturing zones,
respectively. Building on this, the minimum pBS density is calculated
as

Nmin
pBS = max

[∑

a∈A
waNpBS,a(t)

]
, (42)

Similarly, the minimum UAV density is calculated by

Nmin
UAV = max

[∑

a∈A
waNUAV,a(t)

]
. (43)

• Power consumed in the RAN (PRAN) and total power con-
sumed (Ptot): Reducing the power consumption is one of the targets
of 5G. Hence, the optimization problems were selected to minimize the
power consumed. Furthermore, the pBS density, the mBS density, and
the fraction of users connected to pBS and mBS significantly impact the
power consumed in the RAN. Ptotrepresents the total power consump-
tion in the network, that is, the sum of all components of equation 5.
We compare the total power consumed between 4G edge computing,
two approaches from the related work, and the two proposed models.

• Sensitivity to variations in the scenario: Although the traffic
model is likely to be periodic over the week, seldom events may impact
on the metrics. Examples of these events are sports events where the
traffic increases or environmental catastrophes that destroy the network
infrastructure. Consequently, the sensitivity benchmark also evaluates
the pBS coverage and the bandwidth overload (OBS

m and OBS
p ) as the
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Figure 5: Comparison between the models and the simulator. The MSE between both is
0.18 for the random model and 0.03 for the smart model. N = 500, λ = 700, m = 0.5,
available pico {10..30}.

ratio between resources requested and resources given, hereafter named
as service efficiency.

9.3. Results

Model Validation: A Monte Carlo simulator built in Python is used to
assess the validity of the mathematical models. The simulator ran a total of
50 experiments for the following configurations: U ∈ {16, 000...28, 000}, m ∈
{0...1}, dpBS ∈ {20...100} meters, and Nmax

pBS ∈ {10...30}. Fig. 5 shows the
DpBS for the models and the results of the simulator with Nmax

pBS ∈ {10...30}.
The MSE between the simulator and the models is 0.18 for the random model
and 0.03 for the smart model.

User density per picoBS: Fig. 6 shows the distribution of users and
the pBSs’ user density for the random and smart models in the city zones. In
the plots, the left y-axes refer to the total number of users per km2 connected
to mBSs (in blue) and pBSs (in salmon). The y-axis on the right corresponds
to the user density per pBS (in brown) or, in other words, the efficiency of
the model. The user density is further used in the NCC model to obtain
how the efficient the model is in comparison to the use of pBS without NCC.
We consider a uniform distribution of users with λpBS density in every pBS
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placed. It should be noted that this is an aproximation of the real scenario,
which would have different λpBS for different pBS. Moreover, it should be
noted that the power reduction due to NCC is not linear [17].

Fig. 6a shows the distribution of users and the pBS’s user density for
the random and smart models in the residential zone. The small variations
in traffic density (see Fig. 3) result in a constant occupation in the mBSs.
In other words, the mBSs are most of the time working at 100% of their
capacity. The number of pBSs changes with the traffic load over the day.
Fig. 6a also shows that the pBS’s user density increases the fewer the pBS
density is. This is repeated in the three zones and for each of the two models.
In the case of the random model, the reason for this behavior lies in the fact
that the new randomly placed pBS has a chance to cover an area already
covered by another pBS, and thus, the total DpBS is reduced. In the case
of the random model, as observed in section 8, new pBSs when placed they
always have smaller DpBS than the previous ones. Fig. 6a also shows that
the efficiency of the smart model increases six to eight-fold as compared to
the random model.

Fig. 6b shows the distribution of users and pBS’s user density for the
random and smart models in the commercial zone. The huge increase during
working hours (see Fig. 3) impacts on the load of mBSs, which is significantly
reduced during the night and it reaches 100% usage after 11 a.m. Despite
the fact that the mBSs are sufficient to take care of the traffic overnight,
daily traffic peaks need to be covered by pBSs. The random model does not
increase the pBS efficiency in comparison to the residential zone. On the
contrary, the user density for the smart model increases eight- to eleven-fold
in comparison to the random model.

Fig. 6c shows the distribution of users and the pBS’s user density for
the random and smart models in the manufacturing zone. The evaluation
in this zone is similar to the commercial zone but on a smaller scale. The
traffic increase during working hours (see Fig. 3) impacts the load of mBSs.
During the day, the mBSs are loaded to 100% and the pBSs take care of the
traffic peaks. The random model provides a similar efficiency to the other
two zones. The efficiency of the smart model increases six- to eight-fold in
comparison to the random model.

pBS density and UAV Density: Fig. 7 shows the minimum pBS
density per hour of the day for the city of New York. We have compared
the random and smart models with two of the approaches presented in the
related works, namely the approach from Li et al. [23] an the approach from
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(a) Residential zone

(b) Commercial zone

(c) Manufacturing zone

Figure 6: Evaluation of the distribution of users and the pBS’s user density for the random
and smart models in the city zones.

34

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
Figure 7: Minimum pBS density per hour of the day for the city of New York with the
random and smart models.

Huang et al. [24]. However, during the estimation for the aforementioned
approaches, we took the following estimations. First, both works take into
account only the distribution of drone-BS, but they do not take into account
how the previous static infrastructure is deployed. Therefore, we adapted
each model so that the number of mBS was defined by the optimization
strategy in section 8 and the number of pBS was defined using the models
in the related works.

As expected, the pBS density required with the random model is much
higher than with the smart model. There is no significant peak in pBS
density during the working hours due to the fact that residential zones are
much bigger than commercial and manufacturing zones. This makes sense
since the population of New York does not change drastically over the day but
people move inside the city (for example, to commute to work). Moreover,
the smart model outperforms the model proposed by Huang et al. by around
20% and the model proposed by Li et al. by around 50 to 150%, depending
on the hour of the day. The results show that the pBS density required per
km2 is 375, 102, 416, and 90 for Li’s model, Huang’s, and the random and
smart models, respectively.

A picoBS transceiver and a battery are attached to the UAVs to enable
them to fly for more than one hour. This extra devices also impact in the
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energy consumed by the pBS. The pBS density is calculated assuming that
one UAV can remain on the air long enough to fly from the charging position
to the desired place, give coverage for at least one hour, and return to the
charging position. Taking into account the values of Fig. 7 and the number
of UAVs per pBS, the minimum UAV density for the city of New York is 832
UAVs/km2 for the random model and 180 UAVs/km2 for the smart model.
If the efficiency is defined as Drandom

UAV /Dsmart
UAV , the smart model is 460% more

efficient than the random model.
Power consumed: Fig. 8 shows the power consumed in the RAN, the

power consumed in the fronthaul network, and the total power consumed
in the proposed scenario for the residential area, the commercial area, the
manufacturing area, and the complete UZ model. Moreover, the figures com-
pare the power consumption for the current 4G LTE network with wireless
fronthaul/backhaul, the two proposed models, and two of the approaches
introduced in the related work.

In general, the power in the RAN with the smart model is significantly
reduced in comparison to 4G LTE with edge computing. On the other hand,
the massive amount of pBSs required in the random model skyrockets the
power consumption in the RAN. Regarding the fronthaul network, 4G LTE
consumed less power, which is attributed to the lower transmission power
and smaller coverage of pBSs as compared to mBSs. As a result of this, the
number of base stations required to cover the same area increases. More-
over, Fig. 8 shows a huge step in the fronthaul power consumption. The
reason for that lies in the fronthaul power consumption model proposed by
Sabella et al. [41], in which the authors determine three power regions of the
aggregation switches. In this case, the traffic during the night falls below
the threshold of one of the regions and, during the early morning, the traffic
load increases enough to move to the next power region, thus increasing the
power consumed in the fronthaul model. The last plot of Fig. 8 shows the
total power consumed in the network for 4G LTE computing, and 5G edge
computing with the random model, the smart model, and two approaches
from the related work. We observe that both approaches in the related work
perform better than the random model and the approach from Huang et al.
is in average better. The smart model outperforms all three models achieving
power savings from 6% to 25%, depending on the model and the hour of the
day.

In the residential zone, the power consumed in the RAN is reduced from
13 - 16 kW to 11 - 13kW, thus achieving power savings of 17.25%. The
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Figure 8: Evaluation of power consumed in the proposed scenario with the UZ model.

difference between 4G LTE and the new approaches is because of the fact
that 4G LTE does not use mobile pBSs to cover the peaks in traffic but only
mBSs. On the other hand, 4G LTE consumes less power in the fronthaul
network. Regarding total power, the smart model generates around 7.7%
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total power savings in comparison to the 4G edge computing approach.
In the commercial zone, the smart model achieves RAN power savings

around 20% during the working hours of the day. The power evaluation also
shows that the random model is much more sensitive to traffic peaks than
the smart model. Regarding total power consumed, the results show power
savings when using the smart model of around 14% in comparison to the
edge computing approach.

In the manufacturing zone, the model shows power savings around 23%
in the RAN for the smart model in comparison to the 4G wireless fron-
thaul/backhaul network. Similarly to the commercial zone, the power sav-
ings are the highest during the working hours. The results show that the 5G
smart model achieves total power savings around 8.2% in comparison to the
edge computing approach.

The impact of power reduction from NCC is negligible in comparison to
the power reduction as consequence of the pBS placement. The reason lies
on the fact that NCC reduces around 30% [17] of the power consumed in the
MC phase, which is a small decrease when comparing to the power reduction
of shutting down various mBS. Moreover, NCC highly impacts on the power
consumed by the end user, but as explained in section 5, the power consumed
in the UEs is assumed to be negligible in comparison to the power consumed
in the BSs.

9.4. Sensitivity Benchmark

This subsection aims to understand how small changes in the network
may affect the metrics evaluated in previous subsections. This helps to pre-
vent a huge drop in network performance by proactively anticipating network
changes. The smart model is used in the sensitivity benchmark since it per-
forms better than the random model. In the evaluation, the metrics selected
are: power consumed in the RAN, service efficiency, user distribution, pBS’s
user density, pBS density, and pBS coverage. The parameters changed in
the sensitivity benchmark are user density, pBS range (or pBS transmission
power), user mobility, and maximum pBS density. The mBS density remains
the same for all the sensitivity benchmark. We decided to establish this as-
sumption because of the time it would take to build another fixed antenna
with a mBS to support peaks of traffic. While adding another drone can be
done fast and easily, adding a new fixed antenna requires the assessment of
the terrain and legal permissions to build new antennas. Moreover, this an-
tenna would be hard to move if those peaks disappear. Therefore, we foresee
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Description Parameter Value Default

mBS density NmBS 4 4

User density λUE 400..700 500

User mobility m 0..1 0.5

pBS range rpBS 20..100 60

Maximum pBS density Nmax
pBS 10..30 30

Table 5: Parameters for simulation

a scenario with enough mBS to cover the minimum traffic along the day and
additional pBS to cover the peaks of traffic. Table 5 collects the values of
the sensitivity parameters, their variation range, and their default value.

Taking the aforementioned assumption into consideration, in most of the
cases, 4G would not be able to support the requested traffic. Consequently,
it will have to reduce the bandwidth per user. This directly affects the serve
efficiency, which is greatly reduced in the case of 4G. On the other hand, 5G
would simply add more pBSs to support the extra traffic. This increases the
power consumed in the RAN because a) there are more pBS in the field and
b) users can enjoy more bandwidth and send data faster.

Fig. 9a shows the sensitivity benchmark for the power consumed in the
RAN, user distribution, pBS’s user density, pBS density, and pBS coverage
for λUE = {300...700}. A linear correlation can be observed between the user
density and the power consumed in the RAN. The 4G baseline reaches a limit
on power consumption when the mBS infrastructure cannot support more
traffic. Then, the power consumption in the 5G smart model increases and
the power consumption in the 4G baseline stays the same. In other words,
the users connect to the mBSs until the capacity limit is reached. Then
the limit is reached, the 5G scenario can increase the capacity by adding
more base stations, hence increasing the power consumption. On the other
hand, the 4G baseline can only reduce the bandwidth sent to the users, either
selecting to which user preserve the speed or reducing bandwith uniformly
if all users have the same priority. Consequently, the serve efficiency, which
represents the percentage of resources received in comparison to the resources
requested, is reduced. Further increases in user density increase the number
of users connected to pBSs by increasing the pBS density and coverage, while
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(a) Variations in user density: λUE = {300...700}.

(b) Variations in pBS range: rpBS = {20...100}.

(c) Variations in user mobility: m = {0...1}.

(d) Variations in available pBS: Nmax
pBS = {10...30}.

Figure 9: Sensitivity benchmark results of the power consumed in the RAN, the user
distribution, the pBS’s user density, the pBS density, and the pBS coverage.

reducing pBS’s user density. The same behaviour of the reduction of pBS’s
user density is explained in sections 8 and 9.

Fig. 9b shows the sensitivity benchmark for the power consumed in the
RAN, user distribution, pBS’s user density, pBS density, and pBS coverage
for rpBS = {20...100}. The impact of the pBS range on the power consumed
in the RAN can be divided into two well-defined steps clearly appreciated
in Fig. 9b. In the first step, the pBS range is so small (rpBS ≤ 40) that the
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power consumed of the new pBS does not cover for the user offload because
user expectation inside the pBS is very small. Consequently, the pBS is not
placed. Fig. 9b shows that pBSs with small ranges are not placed until the
minimum user density per pBS reaches 5, which is the minimum pBS’s user
density in the scenario under evaluation. More pBS are able to cover at least
5 users with the increase in range (rpBS > 40), which increases the number
of pBSs in the network, and thus, the power consumed in the RAN. On the
bright side, the increase in pBS density increases the bandwidth resources,
thus increasing the capacity and improving service efficiency. The power
consumption in the RAN reaches a maximum, which corresponds to the
minimum value of rpBS that optimizes the bandwidth resources. For bigger
values of rpBS, the bigger the range, the more the users under coverage. This
reduces the number of pBS required and thus, the power consumed in the
RAN.

Fig. 9c shows shows the sensitivity benchmark for the power consumed
in the RAN, user distribution, pBS’s user density, pBS density, and pBS
coverage for m = {0...1}. The behavior of user mobility can be divided
into two sections. In the first section (m ≤ 0.7), there are enough static
users to deploy the pBS accordingly. This maximizes the service efficiency.
Furthermore, the higher the mobility rate, the smaller the pBS’s user density
(Fig. 9c), which increases the number of pBS required to cover the same
number of users and thus, the power consumed in the RAN. In the second
section (m > 0.7), the user’s probability of being mobile is too high, which
scatters the static users, which are the only users that can connect to a pBS.
Occasionally, user sparsity can be very high that the controller cannot find
a position to place a pBS that covers at least 5 users, and consequently, the
bandwidth resources in the network are reduced. This also reduces service
efficiency.

Fig. 9d shows the sensitivity benchmark for the power consumed in the
RAN, user distribution, pBS’s user density, pBS density, and pBS coverage
for Nmax

pBS = {10...30}. The idea of this sensitivity benchmark is to understand
what would happen if there are not enough pBSs available in the system to
cover the resources requested. Consequently, the network resources requested
are increased by maximizing the user expectation (λUE = 700). The correla-
tion between most of the evaluated metrics and the maximum pBS density
is linear. The more pBSs available, the more pBSs used. This has a linear
impact on the power consumed in the RAN and in the service efficiency.
The pBS user density is inversely proportional to the Nmax

pBS . This is easily
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explained by observing the nature of the smart model since every new pBS
placed will always have a smaller user density than the previous one. Con-
sequently, the more pBSs, the smaller the pBS’s user density. Fig. 9d also
shows that the more pBSs placed, the more coverage, and the less pBS’s user
density. Consequently, it can be concluded that every new pBS covers the
same extension, but the users in that region are sparser.

10. Conclusions

Network power savings is a critical issue in urban areas where the net-
work infrastructure evolves to UDNs to cover the increase in traffic. NCC
efficiently boosts the resources in the network with the use of MSCs, which
are arrangements of UEs that offload the cellular traffic to underlay net-
works, however, the creation, placement, management, and destruction of
MSCs is still an open research topic. In this article, we propose a methodol-
ogy to efficiently activate, place, and deactivate MSCs in an urban area. To
leverage daily network traffic changes, we divide the urban area into three
different zones: residential, commercial, and manufacturing, and each repre-
senting a different network traffic distribution. The mobility nature of the
MSC enables the inter-zone mobility. Consequently, the MSCs are moved to
the positions where they are required the most at any time. As a result, the
number of required MSCs is reduced. The investigation targets the reduction
of power consumption in scenarios with two different RRM models (smart
and random), which are validated with a Monte Carlo simulator.

The model has been validated against a Monte-Carlo simulator, achiev-
ing MSE values of 0.18 and 0.03 for the random and smart RRM schemes
respectively. Moreover, the results show total power savings in the network
for the smart model. The power savings are especially achieved in the RAN
and the main contributor is the reduction of mBS density. NCC only impacts
the performance in the pBSs and the UEs connected to them since they are
the only BSs that can provide short-range communication and ad-hoc con-
nectivity between users. The smart model achieves around 15− 25% power
savings in comparison to the 4G edge computing wireless fronthaul/backhaul
and 6−15% power savings in comparison to the random model and the other
two evaluated approaches that were taken from the related work. The smart
model is six- to eleven-fold more efficient than the random model, depending
on the hour of the day and the urban zone. In particular, the smart model
achieves five times more user density per pBS than the random model. This
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impacts directly on the power consumption. The proposed smart and ran-
dom models require a UAV density of 90 and 832 UAVs/km2 in the scenario
under evaluation. Finally, a comprehensive sensitivity evaluation of different
changes in the network is performed. The sensitivity results show that the
user expectation and maximum pBS density impact linearly on the metrics
studied. On the other hand, the pBS range and mobility of users present
different behaviors. For example, the sensitivity evaluation shows that the
range of the pBS (and thus, the transmission power) can be minimized to
maximize the service efficiency in the RAN. In the case of the mobility factor,
the sensitivity evaluation showed an upper bound in the mobility factor for
maximizing the service efficiency in the RAN.

This paper provides a comprehensive study of MSCs placement for energy-
efficient UDNs when NCC is used. However, evaluating this study in a real
testbed is expected to raise new research challenges. In the future, we will
continue this work through a testbed that validates the models proposed in
this paper.

Acknowledgements

This research has been supported in part by European Union’s H2020
research and innovation program under grant agreement H2020-MCSA-ITN-
2016-SECRET 722424[51].

References

[1] R. W. Heath and M. Kountouris, “Modeling heterogeneous network in-
terference,” in 2012 Information Theory and Applications Workshop,
2012, pp. 17–22.

[2] Cisco, “Cisco visual networking index: Forecast and methodology, 2017
to 2022,” Cisco Technologies, Tech. Rep., Accesed: 2020.

[3] Cisco Technologies, “Cisco visual networking index: Forecast and
methodology, 2016 to 2021,” Cisco Technologies, Tech. Rep., Accesed:
2020.

[4] S. T. Baaran, G. K. Kurt, M. Uysal, and . Altunba, “A tutorial on
network coded cooperation,” IEEE Communications Surveys Tutorials,
vol. 18, no. 4, pp. 2970–2990.

43

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
[5] S. Pandi, R. Torre, G. T. Nguyen, and F. H. P. Fitzek, “Massive Video
Multicasting in Cellular Networks using Network Coded Cooperative
Communication,” in 2018 15th IEEE Annual Consumer Communica-
tions and Networking Conference (CCNC) (CCNC 2018), Las Vegas,
USA, 2018.

[6] J. Rodriguez, A. Radwan, C. Barbosa, F. H. Fitzek, R. A. Abd-
Alhameed, J. M. Noras, S. M. Jones, I. Politis, P. Galiotos, and
G. Schulte, “SECRETsecure network coding for reduced energy next
generation mobile small cells: A european training network in wireless
communications and networking for 5g,” in 2017 Internet Technologies
and Applications (ITA). IEEE, pp. 329–333, 00043.

[7] X. Gelabert, P. Legg, and C. Qvarfordt, “Small cell densification re-
quirements in high capacity future cellular networks,” in 2013 IEEE
International Conference on Communications Workshops (ICC), 2013,
pp. 1112–1116.

[8] P. Kela, X. Gelabert, J. Turkka, M. Costa, K. Heiska, K. Leppnen,
and C. Qvarfordt, “Supporting mobility in 5g: A comparison between
massive mimo and continuous ultra dense networks,” in 2016 IEEE In-
ternational Conference on Communications (ICC), 2016, pp. 1–6.

[9] R. Bassoli, F. Granelli, S. T. Arzo, and M. D. Renzo, “Toward 5G cloud
radio access network: An energy and latency perspective,” IEEE Access,
2019.

[10] W. Lu and M. Di Renzo, “Stochastic geometry modeling of cellular
networks: Analysis, simulation and experimental validation,” in
Proceedings of the 18th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM
’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 179188. [Online]. Available: https://doi.org/10.1145/2811587.
2811597

[11] R. Ahlswede, Ning Cai, S. . R. Li, and R. W. Yeung, “Network Informa-
tion Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, 2000.

44

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
[12] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[13] J. N. Laneman, Chapter 1 COOPERATIVE DIVERSITY Models, Al-
gorithms, and Architectures.

[14] F. Rossetto and M. Zorzi, “Mixing Network Coding and Cooperation for
Reliable Wireless Communications,” IEEE Wireless Communications,
vol. 18, no. 1, pp. 15–21, 2011.

[15] I. Leiva-Mayorga, R. Torre, S. Pandi, G. T. Nguyen, V. Plà Boscà,
J. Martinez-Bauset, and F. H. P. Fitzek, “A Network-coded Cooperation
Protocol for Efficient Massive Content Distribution,” in IEEE GLOBE-
COM 2018 Conference Proceedings, Technische Universität Dresden.
Dubai, United Arab Emirates: IEEE, 2018.

[16] I. Leiva-Mayorga, R. Torre, V. Plà Boscà, S. Pandi, G. T. Nguyen,
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